The growth speed for the product of consecutive digits in Luroth expansions

被引:4
|
作者
Zhou, Qinglong [1 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 198卷 / 01期
关键词
Luroth expansion; Diophantine approximation; Jarnik-like set; Hausdorff dimension; EXACT APPROXIMATION ORDER; PARTIAL QUOTIENTS; NUMBERS; SETS;
D O I
10.1007/s00605-021-01654-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For x is an element of [0, 1), let [d(1)( x), d(2)(x),...] be its Luroth expansion and {p(n)(x)/qn (x), n >= 1} be the sequence of convergents of x. For alpha, beta is an element of [0,+infinity) with a <= beta, we define the exceptional sets E(beta) = {x is an element of [0, 1) : lim sup (n ->infinity) log (d(n)(x)d(n+1)(x))/log q(n)(x) = beta} and F(alpha, beta) = {x [0, 1) : lim inf(n ->infinity) log (d(n)(x)d(n+1)(x))/log qn(x) = a, lim sup(n ->infinity) log d(n)(x)d(n+1)(x))/log q(n)(x) = beta}. In this paper, we completely determine the Hausdorff dimension of sets E(beta) and F(alpha, beta).
引用
收藏
页码:233 / 248
页数:16
相关论文
共 50 条