This paper demonstrates the usefulness of an equilibria-cotransport model for understanding the isopropyl alcohol-enhanced transport of an ionizable model compound, terbutaline in its sulfate salt form, through human skin in vitro. With the same isopropyl alcohol concentrations (0-80% v/v) present at both sides of skin, the permeation experiments were conducted using split-thickness skin and dermis membranes. The equilibria-cotransport model was consistent with total terbutaline flux and a terbutaline-to-sulfate flux ratio, both increased with increasing isopropyl alcohol and/or terbutaline sulfate concentrations. From the saturated drug solutions, aqueous isopropyl alcohol enhanced terbutaline skin flux about 10-100-fold with the maximum at 60-80% isopropyl alcohol. This overall flux enhancement was quantitatively separated into the contributions of isopropyl alcohol effects on both equilibrated donor concentrations and skin permeabilities of protonated terbutaline, terbutaline-sulfate ion pair anion, and neutral terbutaline-sulfate (2:1) ion triplet. In addition to altering the species equilibria, isopropyl alcohol was found to enhance the transport of both neutral and ionic species of terbutaline sulfate across stratum corneum.