Variable Selection in a Log-Linear Birnbaum-Saunders Regression Model for High-Dimensional Survival Data via the Elastic-Net and Stochastic EM

被引:1
|
作者
Zhang, Yukun [1 ]
Lu, Xuewen [1 ]
Desmond, Anthony F. [2 ]
机构
[1] Univ Calgary, Dept Math & Stat, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[2] Univ Guelph, Dept Math & Stat, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Birnbaum-Saunders distribution; Censored data; Coordinate descent; Iterative least squares; CENSORED-DATA; MAXIMUM-LIKELIHOOD; MOMENT ESTIMATION; RIDGE-REGRESSION; ALGORITHM; PARAMETERS;
D O I
10.1080/00401706.2015.1133457
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Birnbaum-Saunders (BS) distribution is broadly used to model failure times in reliability and survival analysis. In this article, we propose a simultaneous parameter estimation and variable selection procedure in a log-linear BS regression model for high-dimensional survival data. To deal with censored survival data, we iteratively run a combination of the stochastic EM algorithm (SEM) and variable selection procedure to generate pseudo-complete data and select variables until convergence. Treating pseudo-complete data as uncensored data via SEM makes it possible to incorporate iterative penalized least squares and simplify computation. We demonstrate the efficacy of our method using simulated and real datasets.
引用
收藏
页码:383 / 392
页数:10
相关论文
共 22 条
  • [1] A log-linear regression model for the β-Birnbaum-Saunders distribution with censored data
    Ortega, Edwin M. M.
    Cordeiro, Gauss M.
    Lemonte, Artur J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (03) : 698 - 718
  • [2] A new log-linear bimodal Birnbaum-Saunders regression model with application to survival data
    Cribari-Neto, Francisco
    Fonseca, Rodney V.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2019, 33 (02) : 329 - 355
  • [3] A group adaptive elastic-net approach for variable selection in high-dimensional linear regression
    Jianhua Hu
    Jian Huang
    Feng Qiu
    Science China(Mathematics), 2018, 61 (01) : 173 - 188
  • [4] A group adaptive elastic-net approach for variable selection in high-dimensional linear regression
    Hu, Jianhua
    Huang, Jian
    Qiu, Feng
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (01) : 173 - 188
  • [5] A group adaptive elastic-net approach for variable selection in high-dimensional linear regression
    Jianhua Hu
    Jian Huang
    Feng Qiu
    Science China Mathematics, 2018, 61 : 173 - 188
  • [6] Nonnegative estimation and variable selection via adaptive elastic-net for high-dimensional data
    Li, Ning
    Yang, Hu
    Yang, Jing
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (12) : 4263 - 4279
  • [7] VARIANCE ESTIMATION IN HIGH-DIMENSIONAL LINEAR REGRESSION VIA ADAPTIVE ELASTIC-NET
    Wang, Xin
    Kong, Lingchen
    Zhuang, Xinying
    Wang, Liqun
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (02) : 630 - 646
  • [8] Variable selection for high-dimensional generalized linear models with the weighted elastic-net procedure
    Wang, Xiuli
    Wang, Mingqiu
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (05) : 796 - 809
  • [9] Transfer learning for high-dimensional linear regression via the elastic net
    Meng, Kang
    Gai, Yujie
    Wang, Xiaodi
    Yao, Mei
    Sun, Xiaofei
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [10] Multi-step adaptive elastic-net: reducing false positives in high-dimensional variable selection
    Xiao, Nan
    Xu, Qing-Song
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (18) : 3755 - 3765