High Frequential Resolution Networks: Considerations on a New Functional Brain Connectivity Framework

被引:2
|
作者
Rodriguez-Gonzalez, Victor [1 ]
Gutierrez-de Pablo, Victor [1 ]
Gomez, Carlos [1 ,2 ]
Shigihara, Yoshihito [3 ]
Hoshi, Hideyuki [3 ]
Hornero, Roberto [1 ,2 ,4 ]
Tola-Arribas, Miguel A. [5 ,6 ]
Cano, Monica [5 ,6 ]
Poza, Jesus [1 ,2 ,4 ]
机构
[1] Univ Valladolid, Biomed Engn Grp, Valladolid, Spain
[2] Ctr Invest Biomed Red Bioingn Biomat & Nanomed CI, Zaragoza, Spain
[3] Hokuto Hosp, Obihiro, Hokkaido, Japan
[4] Univ Valladolid, Inst Invest Matemat IMUVA, Valladolid, Spain
[5] Rio Hortega Univ Hosp, Dept Neurol, Valladolid, Spain
[6] Rio Hortega Univ Hosp, Dept Clin Neurophysiol, Valladolid, Spain
关键词
D O I
10.1109/EMBC46164.2021.9630196
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Connectivity analyses are widely used to assess the interaction brain networks. This type of analyses is usually conducted considering the well-known classical frequency bands: delta, theta, alpha, beta, and gamma. However, this parcellation of the frequency content can bias the analyses, since it does not consider the between-subject variability or the particular idiosyncrasies of the connectivity patterns that occur within a band. In this study, we addressed these limitations by introducing the High Frequential Resolution Networks (HFRNs). HFRNs were constructed, using a narrow-bandwidth FIR bank filter of 1 Hz bandwidth, for two different connectivity metrics (Amplitude Envelope Correlation, AEC, and Phase Lag index, PLI) and for 3 different databases of MEG and EEG recordings. Results showed a noticeable similarity between the frequential evolution of PLI, AEC, and the Power Spectral Density (PSD) from MEG and EEG signals. Nonetheless, some technical remarks should be considered: (i) results at the gamma band should exclude the frequency range around 50 Hz due to abnormal connectivity patterns, consequence of the previously applied 50 Hz notch-filter; (ii) HFRNs patterns barely vary with the connection distance; and (iii) a low sampling frequency can exert a remarkable influence on HFRNs. To conclude, we proposed a new framework to perform connectivity analyses that allow to further analyze the frequency-based distribution of brain networks.
引用
收藏
页码:722 / 725
页数:4
相关论文
共 50 条
  • [1] Tracking dynamic brain networks using high temporal resolution MEG measures of functional connectivity
    Tewarie, Prejaas
    Liuzzi, Lucrezia
    O'Neill, George C.
    Quinn, Andrew J.
    Griffa, Alessandra
    Woolrich, Mark W.
    Stam, Cornelis J.
    Hillebrand, Arjan
    Brookes, Matthew J.
    NEUROIMAGE, 2019, 200 : 38 - 50
  • [2] Techniques for Brain Functional Connectivity Analysis from High Resolution Imaging
    Leitao, A. C.
    Francisco, A. P.
    Abreu, R.
    Nunes, S.
    Rodrigues, J.
    Figueiredo, P.
    Wald, L. L.
    Bianciardi, M.
    Silveira, L. M.
    COMPLEX NETWORKS VI, 2015, 597 : 131 - 138
  • [3] Functional Connectivity and Brain Networks in Schizophrenia
    Lynall, Mary-Ellen
    Bassett, Danielle S.
    Kerwin, Robert
    McKenna, Peter J.
    Kitzbichler, Manfred
    Muller, Ulrich
    Bullmore, Edward T.
    JOURNAL OF NEUROSCIENCE, 2010, 30 (28): : 9477 - 9487
  • [4] Construction of Functional Brain Connectivity Networks
    Magalhaes, Ricardo
    Marques, Paulo
    Veloso, Telma
    Soares, Jose Miguel
    Sousa, Nuno
    Alves, Victor
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 12TH INTERNATIONAL CONFERENCE, 2015, 373 : 303 - 310
  • [5] A Framework to Control Functional Connectivity in the Human Brain
    Menara, Tommaso
    Baggio, Giacomo
    Bassett, Danielle S.
    Pasqualetti, Fabio
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 4697 - 4704
  • [6] Aiming for high resolution of brain networks in time and space Electroencephalography Source Connectivity
    Hassan, Mahmoud
    Wendling, Fabrice
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (03) : 81 - 96
  • [7] Frequency specificity of functional connectivity in brain networks
    Wu, Changwei W.
    Gu, Hong
    Lu, Hanbing
    Stein, Elliot A.
    Chen, Jyh-Horng
    Yang, Yihong
    NEUROIMAGE, 2008, 42 (03) : 1047 - 1055
  • [8] Dynamic Brain Networks with Prescribed Functional Connectivity
    Casti, U.
    Baggio, G.
    Benozzo, D.
    Zampieri, S.
    Bertoldo, A.
    Chiuso, A.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 709 - 714
  • [9] FITTING NETWORKS MODELS FOR FUNCTIONAL BRAIN CONNECTIVITY
    Rajapakse, Jagath C.
    Gupta, Sukrit
    Sui, Xiuchao
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 515 - 519
  • [10] Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution
    Bruno-Félix Osmanski
    Sophie Pezet
    Ana Ricobaraza
    Zsolt Lenkei
    Mickael Tanter
    Nature Communications, 5