On minimal ideal triangulations of cusped hyperbolic 3-manifolds

被引:4
|
作者
Jaco, William [1 ]
Rubinstein, Hyam [2 ]
Spreer, Jonathan [3 ]
Tillmann, Stephan [3 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[3] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
57Q15; 57N10; 57M50; 57M27 (primary); CANONICAL TRIANGULATIONS; BOUNDS; DECOMPOSITIONS; SURFACES;
D O I
10.1112/topo.12127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Previous work of the authors studies minimal triangulations of closed 3-manifolds using a characterisation of low degree edges, embedded layered solid torus subcomplexes and 1-dimensional Z2-cohomology. The underlying blueprint is now used in the study of minimal ideal triangulations. As an application, it is shown that the monodromy ideal triangulations of the hyperbolic once-punctured torus bundles are minimal.
引用
收藏
页码:308 / 342
页数:35
相关论文
共 50 条