Dual involvement of CbrAB and NtrBC in the regulation of histidine utilization in Pseudomonas fluorescens SBW25

被引:67
|
作者
Zhang, Xue-Xian [1 ]
Rainey, Paul B.
机构
[1] Massey Univ, Inst Mol Sci, Auckland, New Zealand
关键词
D O I
10.1534/genetics.107.081984
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Pseudomonas fluorescens SBW25 is capable of growing on histidine as a sole source of carbon and/or nitrogen. Previous work showed that the two-component regulatory system CbrAB is required for expression of the histidine utilization (hut) locus when histidine is the sole source of carbon and nitrogen. Here, using mutational analysis and transcriptional assays, we demonstrate involvement of a second two-component system, NtrBC. When histidine is the sole carbon source, transcription of the hutU operon is initiated from a sigma(54)-type promoter and requires CbrB, (an enhancer binding protein for sigma(54)-recruitment). However, when histidine is the sole nitrogen source, the hutU operon is transcribed from a sigma(70)-type promoter and requires either CbrB or the nitrogen regulator, NtrC. No role was found for the SBW25 homolog of the nitrogen assimilation control protein (NAC). Biolog phenotypic microarray analysis of the ability of the three mutants (Delta cbrB, Delta ntrC, and Delta cbrB Delta ntrQ to utilize 190 carbon and 95 nitrogen substrates confirmed the central regulatory roles of CbrAB and NtrBC in cellular carbon and nitrogen catabolism: deletion of cbrB abolished growth on 20 carbon substrates; deletion of ntrC eliminated growth on 28 nitrogen substrates. A double cbrB-ntrC mutant was unable to utilize a further 14 nitrogen substrates (including histidine, proline, leucine, isoleucine, and valine). Our data show that CbrAB plays a role in regulation of both carbon and nitrogen catabolism and maintains activity of catabolic pathways under different C:N ratios.
引用
收藏
页码:185 / 195
页数:11
相关论文
共 50 条
  • [1] Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25
    Zhang, Xue-Xian
    Rainey, Paul B.
    GENETICS, 2007, 176 (04) : 2165 - 2176
  • [2] Regulation of copper homeostasis in Pseudomonas fluorescens SBW25
    Zhang, Xue-Xian
    Rainey, Paul B.
    ENVIRONMENTAL MICROBIOLOGY, 2008, 10 (12) : 3284 - 3294
  • [3] Barcoding Populations of Pseudomonas fluorescens SBW25
    Theodosiou, Loukas
    Farr, Andrew D.
    Rainey, Paul B.
    JOURNAL OF MOLECULAR EVOLUTION, 2023, 91 (03) : 254 - 262
  • [4] Barcoding Populations of Pseudomonas fluorescens SBW25
    Loukas Theodosiou
    Andrew D. Farr
    Paul B. Rainey
    Journal of Molecular Evolution, 2023, 91 : 254 - 262
  • [5] The Gac regulon of Pseudomonas fluorescens SBW25
    Cheng, Xu
    de Bruijn, Irene
    van derVoort, Menno
    Loper, Joyce E.
    Raaijmakers, Jos M.
    ENVIRONMENTAL MICROBIOLOGY REPORTS, 2013, 5 (04): : 608 - 619
  • [6] Pseudomonas in the underworld:: The secret life of Pseudomonas fluorescens SBW25
    Preston, G
    Spiers, A
    Zhang, XX
    Jackson, R
    Gal, M
    Knight, C
    Gehrig, S
    Malone, J
    Moon, C
    Godfrey, S
    Robinson, Z
    Bertrand, N
    Field, D
    Rainey, P
    PSEUDOMONAS SYRINGAE AND RELATED PATHOGENS: BIOLOGY AND GENETICS, 2003, : 347 - 353
  • [7] Genome Update for Pseudomonas fluorescens Isolate SBW25
    Fortmann-Grote, Carsten
    Hugoson, Eric
    Summers, Joanna
    Theodosiou, Loukas
    Rainey, Paul B.
    MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 2023, 12 (02):
  • [8] Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome
    Rainey, PB
    Bailey, MJ
    MOLECULAR MICROBIOLOGY, 1996, 19 (03) : 521 - 533
  • [9] Swimming behavior of the monotrichous bacterium Pseudomonas fluorescens SBW25
    Ping, Liyan
    Birkenbeil, Jan
    Monajembashi, Shamci
    FEMS MICROBIOLOGY ECOLOGY, 2013, 86 (01) : 36 - 44
  • [10] Global Regulatory Roles of the Histidine-Responsive Transcriptional Repressor HutC in Pseudomonas fluorescens SBW25
    Naren, Naran
    Zhang, Xue-Xian
    JOURNAL OF BACTERIOLOGY, 2020, 202 (13)