The resultants method for approximating real fixed points of polynomials

被引:4
|
作者
Syam, MI [1 ]
机构
[1] United Arab Emirates Univ, Dept Math & Comp Sci, Al Ain, U Arab Emirates
关键词
fixed points; resultant matrix; Lanczos method; sparse matrix;
D O I
10.1016/S0898-1221(00)00326-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new method for computing the real fixed points of polynomials using the resultants method. It is based on the theory of multi-resultants. The unstable calculation of the determinant of the large sparse matrix is replaced by a stable minimization problem using the Lanczos method. This technique will be able to take advantage of the sparseness of the resultant matrix. Algorithms and numerical results are presented. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:879 / 891
页数:13
相关论文
共 50 条
  • [1] ON APPROXIMATING FIXED-POINTS
    SINGH, SP
    WATSON, B
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 393 - 395
  • [2] Approximating Fixed Points of Infinite Nonexpansive Mappings by the Hybrid Method
    M. Kikkawa
    W. Takahashi
    Journal of Optimization Theory and Applications, 2003, 117 : 93 - 101
  • [3] Approximating fixed points of infinite nonexpansive mappings by the hybrid method
    Kikkawa, M
    Takahashi, W
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 117 (01) : 93 - 101
  • [4] Resultants of minimal polynomials of maximal real cyclotomic extensions
    Loper, K. Alan
    Werner, Nicholas J.
    JOURNAL OF NUMBER THEORY, 2016, 158 : 298 - 315
  • [5] On an iterative scheme for approximating fixed points
    Ali, Qasim
    Hussain, Azhar
    George, Reny
    Hassan, Shanza
    Adeel, Muhammad
    Mitrovic, Zoran D.
    FILOMAT, 2024, 38 (12)
  • [6] APPROXIMATING FIXED POINTS IN THE HILBERT BALL
    Kopecka, Eva
    Reich, Simeon
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2014, 15 (04) : 819 - 829
  • [7] Approximating fixed points by iteration processes
    Huang, YY
    Jeng, JC
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (02): : 129 - 138
  • [8] Approximating fixed points by iteration processes
    Ind J Pure Appl Math, 2 (129):
  • [9] APPROXIMATING FIXED POINTS OF NONEXPANSIVE MAPPINGS
    Stevic, Stevo
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2006, 1 (03): : 437 - 450
  • [10] A projection method for approximating fixed points of quasinonexpansive mappings in Hadamard spaces
    Huang S.
    Kimura Y.
    Fixed Point Theory and Applications, 2016 (1)