SPS: A Subjective Perception Score for Text-to-Image Synthesis

被引:1
|
作者
Zhang, Xuewen [1 ]
Yu, Wenxin [1 ]
Jiang, Ning [1 ]
Zhang, Yunye [2 ]
Zhang, Zhiqiang [3 ]
机构
[1] Southwest Univ Sci & Technol, Mianyang, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[3] Hosei Univ, Tokyo, Japan
关键词
QUALITY ASSESSMENT;
D O I
10.1109/ISCAS51556.2021.9401705
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fundamental problem of text-to-image synthesis is the lack of quality assessment for a single generated image. Quantitative indicators of this work (such as Inception Score and Frechet Inception Distance) only affect plenty of images' feature distribution. It causes monotonous evaluation and plenty of poor-quality image results. This paper proposes a new evaluation criterion for text-to-image synthesis by the blind image quality assessment(BIQA) method. To train the model, a Multi-Metrics Quality Assessment Dataset for generated birds' images(MMQA) is proposed. Besides, the Multi-hyper model is proposed to fit our dataset better. Experiments show that our method evaluates text-to-image tasks more comprehensively and optimize their results.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Survey of text-to-image synthesis
    Cao Y.
    Qin J.
    Ma Q.
    Sun H.
    Yan K.
    Wang L.
    Ren J.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (02): : 219 - 238
  • [2] Unsupervised text-to-image synthesis
    Dong, Yanlong
    Zhang, Ying
    Ma, Lin
    Wang, Zhi
    Luo, Jiebo
    PATTERN RECOGNITION, 2021, 110
  • [3] Unsupervised text-to-image synthesis
    Dong, Yanlong
    Zhang, Ying
    Ma, Lin
    Wang, Zhi
    Luo, Jiebo
    Pattern Recognition, 2021, 110
  • [4] Mobile App for Text-to-Image Synthesis
    Kang, Ryan
    Sunil, Athira
    Chen, Min
    MOBILE COMPUTING, APPLICATIONS, AND SERVICES, MOBICASE 2019, 2019, 290 : 32 - 43
  • [5] Adversarial text-to-image synthesis: A review
    Frolov, Stanislav
    Hinz, Tobias
    Raue, Federico
    Hees, Joern
    Dengel, Andreas
    NEURAL NETWORKS, 2021, 144 : 187 - 209
  • [6] Unleashing Text-to-Image Diffusion Models for Visual Perception
    Zhao, Wenliang
    Rao, Yongming
    Liu, Zuyan
    Liu, Benlin
    Zhou, Jie
    Lu, Jiwen
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 5706 - 5716
  • [7] Scaling up GANs for Text-to-Image Synthesis
    Kang, Minguk
    Zhu, Jun-Yan
    Zhang, Richard
    Park, Jaesik
    Shechtman, Eli
    Paris, Sylvain
    Park, Taesung
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10124 - 10134
  • [8] Efficient Neural Architecture for Text-to-Image Synthesis
    Souza, Douglas M.
    Wehrmann, Jonatas
    Ruiz, Duncan D.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [9] Joint Embedding based Text-to-Image Synthesis
    Wang, Menglan
    Yu, Yue
    Li, Benyuan
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 432 - 436
  • [10] A Comprehensive Pipeline for Complex Text-to-Image Synthesis
    Fei Fang
    Fei Luo
    Hong-Pan Zhang
    Hua-Jian Zhou
    Alix L. H. Chow
    Chun-Xia Xiao
    Journal of Computer Science and Technology, 2020, 35 : 522 - 537