USING MACHINE-LEARNING FEATURE SELECTION APPLIED TO NEAR INFRARED SPECTRA TO CHARACTERIZE AGES OF MALARIA VECTORS

被引:0
|
作者
Milali, Masabho P. [1 ]
机构
[1] Marquette Univ, Milwaukee, WI 53233 USA
来源
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
382
引用
收藏
页码:116 / 116
页数:1
相关论文
共 50 条
  • [1] Machine Learning Applied to Near-Infrared Spectra for Chicken Meat Classification
    Barbon Jr, Sylvio
    Ayub da Costa Barbon, Ana Paula
    Mantovani, Rafael Gomes
    Barbin, Douglas Fernandes
    JOURNAL OF SPECTROSCOPY, 2018, 2018
  • [2] Comparison between Linear and Nonlinear Machine-Learning Algorithms for Predicting the Properties of Biodiesel Using Near-infrared Spectra
    Thongphut, Chitwadee
    Chungcharoen, Thatchapol
    Phetpan, Kittisak
    2023 5TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS, ICCR, 2023, : 261 - 266
  • [3] Machine learning applied to near-infrared spectra for clinical pleural effusion classification
    Chen, Zhongjian
    Chen, Keke
    Lou, Yan
    Zhu, Jing
    Mao, Weimin
    Song, Zhengbo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Machine learning applied to near-infrared spectra for clinical pleural effusion classification
    Zhongjian Chen
    Keke Chen
    Yan Lou
    Jing Zhu
    Weimin Mao
    Zhengbo Song
    Scientific Reports, 11
  • [5] Using transfer learning and dimensionality reduction techniques to improve generalisability of machine-learning predictions of mosquito ages from mid-infrared spectra
    Emmanuel P. Mwanga
    Doreen J. Siria
    Joshua Mitton
    Issa H. Mshani
    Mario González-Jiménez
    Prashanth Selvaraj
    Klaas Wynne
    Francesco Baldini
    Fredros O. Okumu
    Simon A. Babayan
    BMC Bioinformatics, 24
  • [6] Using transfer learning and dimensionality reduction techniques to improve generalisability of machine-learning predictions of mosquito ages from mid-infrared spectra
    Mwanga, Emmanuel P.
    Siria, Doreen J.
    Mitton, Joshua
    Mshani, Issa H.
    Gonzalez-Jimenez, Mario
    Selvaraj, Prashanth
    Wynne, Klaas
    Baldini, Francesco
    Okumu, Fredros O.
    Babayan, Simon A.
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [7] Near Infrared Spectra Data Analysis by Using Machine Learning Algorithms
    Xiao, Perry
    Chen, Daqing
    INTELLIGENT COMPUTING, VOL 1, 2022, 506 : 532 - 544
  • [8] Dynamic Feature Selection for Machine-Learning Based Concurrency Regulation in STM
    Rughetti, Diego
    Di Sanzo, Pierangelo
    Ciciani, Bruno
    Quaglia, Francesco
    2014 22ND EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2014), 2014, : 68 - 75
  • [9] On the use of causal feature selection in the context of machine-learning indirect test
    Barragan, M. J.
    Leger, G.
    Cilici, F.
    Lauga-Larroze, E.
    Bourdel, S.
    Mir, S.
    2019 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2019, : 276 - 279
  • [10] Machine-learning Prediction of Infrared Spectra of Interstellar Polycyclic Aromatic Hydrocarbons
    Kovacs, Peter
    Zhu, Xiaosi
    Carrete, Jesus
    Madsen, Georg K. H.
    Wang, Zhao
    ASTROPHYSICAL JOURNAL, 2020, 902 (02):