Convergence in Holder norms with applications to Monte Carlo methods in infinite dimensions

被引:10
|
作者
Cox, Sonja [1 ]
Hutzenthaler, Martin [2 ]
Jentzen, Arnulf [3 ,4 ]
van Neerven, Jan [5 ]
Welti, Timo [4 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[2] Univ Duisburg Essen, Fac Math, D-45127 Essen, Germany
[3] Univ Munster, Fac Math & Comp Sci, D-48149 Munster, Germany
[4] Swiss Fed Inst Technol, Seminar Appl Math, CH-8092 Zurich, Switzerland
[5] Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, Netherlands
基金
奥地利科学基金会;
关键词
DIFFERENTIAL-EQUATIONS; APPROXIMATIONS; TIME; DIVERGENCE; COMPLEXITY; SCHEME; RATES; SPDES;
D O I
10.1093/imanum/drz063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if a sequence of piecewise affine linear processes converges in the strong sense with a positive rate to a stochastic process that is strongly Holder continuous in time, then this sequence converges in the strong sense even with respect to much stronger Holder norms and the convergence rate is essentially reduced by the Holder exponent. Our first application hereof establishes pathwise convergence rates for spectral Galerkin approximations of stochastic partial differential equations. Our second application derives strong convergence rates of multilevel Monte Carlo approximations of expectations of Banach-space-valued stochastic processes.
引用
收藏
页码:493 / 548
页数:56
相关论文
共 50 条
  • [1] ON THE CONVERGENCE OF ADAPTIVE SEQUENTIAL MONTE CARLO METHODS
    Beskos, Alexandros
    Jasra, Ajay
    Kantas, Nikolas
    Thiery, Alexandre
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (02): : 1111 - 1146
  • [2] On performance measures for infinite swapping Monte Carlo methods
    Doll, J. D.
    Dupuis, Paul
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (02):
  • [3] Advanced Monte Carlo Methods and Applications
    Pedroni, Nicola
    Zio, Enrico
    Cadini, Francesco
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2017, 3 (04):
  • [4] ON THE STABILITY OF SEQUENTIAL MONTE CARLO METHODS IN HIGH DIMENSIONS
    Beskos, Alexandros
    Crisan, Dan
    Jasra, Ajay
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (04): : 1396 - 1445
  • [5] Multiorbital Hubbard model in infinite dimensions: Quantum Monte Carlo calculation
    Han, JE
    Jarrell, M
    Cox, DL
    PHYSICAL REVIEW B, 1998, 58 (08): : R4199 - R4202
  • [6] Mixing rates for Hamiltonian Monte Carlo algorithms in finite and infinite dimensions
    Glatt-Holtz, Nathan E.
    Mondaini, Cecilia F.
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2022, 10 (04): : 1318 - 1391
  • [7] Mixing rates for Hamiltonian Monte Carlo algorithms in finite and infinite dimensions
    Nathan E. Glatt-Holtz
    Cecilia F. Mondaini
    Stochastics and Partial Differential Equations: Analysis and Computations, 2022, 10 : 1318 - 1391
  • [8] The Convergence of Markov Chain Monte Carlo Methods: From the Metropolis Method to Hamiltonian Monte Carlo
    Betancourt, Michael
    ANNALEN DER PHYSIK, 2019, 531 (03)
  • [9] SOME MOLECULAR APPLICATIONS OF MONTE CARLO METHODS
    BUNKER, DL
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (04) : 653 - &
  • [10] SOME MOLECULAR APPLICATIONS OF MONTE CARLO METHODS
    BUNKER, DL
    SIAM REVIEW, 1968, 10 (02) : 246 - &