Perturbative Quantum Monte Carlo Method for Nuclear Physics

被引:17
|
作者
Lu, Bing-Nan [1 ]
Li, Ning [2 ]
Elhatisari, Serdar [3 ]
Ma, Yuan-Zhuo [4 ]
Lee, Dean [5 ,6 ]
Meissner, Ulf-G [7 ,8 ,9 ,10 ,11 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100193, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
[3] Gaziantep Islam Sci & Technol Univ, Fac Nat Sci & Engn, TR-27010 Gaziantep, Turkey
[4] South China Normal Univ, Inst Quantum Matter, Guangdong Prov Key Lab Nucl Sci, Guangzhou 510006, Peoples R China
[5] Michigan State Univ, Facilay Rare Isotope Beams, E Lansing, MI 48824 USA
[6] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[7] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany
[8] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany
[9] Forschungszentrum Julich, Inst Adv Simulat, Inst Kernphys, D-52425 Julich, Germany
[10] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany
[11] Tbilisi State Univ, GE-0186 Tbilisi, Georgia
基金
中国国家自然科学基金; 欧洲研究理事会; 中国博士后科学基金;
关键词
EFFECTIVE-FIELD THEORY; LIGHT-NUCLEI; LATTICE; SIMULATIONS;
D O I
10.1103/PhysRevLett.128.242501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. We demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the binding energies of several light nuclei up to O-16 by expanding the Hamiltonian around the Wigner SU(4) limit and find good agreement with data. In contrast to the natural ordering of the perturbative series, we find remarkably large second-order energy corrections. This occurs because the perturbing interactions break the symmetries of the unperturbed Hamiltonian. Our method is free from the sign problem and can be applied to QMC calculations for many-body systems in nuclear physics, condensed matter physics, ultracold atoms, and quantum chemistry.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum Monte Carlo in nuclear physics
    Carlson, J
    QUANTUM MONTE CARLO METHODS IN PHYSICS AND CHEMISTRY, 1999, 525 : 287 - 312
  • [2] Quantum Monte Carlo methods for nuclear physics
    Carlson, J.
    Gandolfi, S.
    Pederiva, F.
    Pieper, Steven C.
    Schiavilla, R.
    Schmidt, K. E.
    Wiringa, R. B.
    REVIEWS OF MODERN PHYSICS, 2015, 87 (03) : 1067 - 1118
  • [3] Quantum Monte Carlo approaches to nuclear and atomic physics
    Carlson, J.
    Gandolfi, Stefano
    Gezerlis, Alexandros
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2012, 2012 (01):
  • [4] Quantum Monte Carlo Methods in Nuclear Physics: Recent Advances
    Lynn, J. E.
    Tews, I.
    Gandolfi, S.
    Lovato, A.
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 69, 2019, 69 : 279 - 305
  • [5] Variational quantum Monte-Carlo method in surface physics
    Schattke, W
    Bahnsen, R
    Redmer, R
    PROGRESS IN SURFACE SCIENCE, 2003, 72 (5-8) : 87 - 116
  • [6] Optimizing efficiency of perturbative Monte Carlo method
    Evans, TJ
    Truong, TN
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1998, 19 (14) : 1632 - 1638
  • [7] Worldline Monte Carlo method for few-body nuclear physics
    Chandrasekharan, Shailesh
    Nguyen, Son T.
    Richardson, Thomas R.
    PHYSICAL REVIEW C, 2024, 110 (02)
  • [8] NUCLEAR PAIRING CORRELATIONS BY A QUANTUM MONTE-CARLO METHOD
    CERF, N
    NUCLEAR PHYSICS A, 1993, 564 (03) : 383 - 412
  • [9] Nuclear shell model by the quantum Monte Carlo diagonalization method
    Honma, M
    Mizusaki, T
    Otsuka, T
    PHYSICAL REVIEW LETTERS, 1996, 77 (16) : 3315 - 3318
  • [10] Quantum Monte Carlo Diagonalization method for nuclear shell model
    Honma, M
    Mizusaki, T
    Otsuka, T
    PROCEEDINGS OF THE XVII RCNP INTERNATIONAL SYMPOSIUM ON INNOVATIVE COMPUTATIONAL METHODS IN NUCLEAR MANY-BODY PROBLEMS: TOWARDS A NEW GENERATION OF PHYSICS IN FINITE QUANTUM SYSTEMS, 1998, : 85 - 93