From quasiperiodic tilings with τ-inflation to τ-wavelets

被引:4
|
作者
Gazeau, JP
Kramer, P
机构
[1] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
[2] Univ Paris 07, Lab Phys Theor Mat Condensee, Paris, France
关键词
inflation; multiresolution analysis; wavelets;
D O I
10.1016/S0921-5093(00)01143-6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We construct wavelets on quasiperiodic tilings I with stone-inflation symmetry. All tiles of I when scaled by the factor tau can be packed face-to-face from the original ones. For the planar Tubingen triangle and the Penrose-Robinson tiling, we give the geometric generators of the deflation as affine Euclidean pairs (t, g) of(translations, reflection/rotations) with t from the fivefold module and g from the Coxeter group I-2(5). Deflation generates levels of subdivisions of the tilings. On these subdivisions, we give the Haar wavelet construction. On each level of deflation, we transform from the set of characteristic functions to explicit orthogonal wavelet bases. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:425 / 428
页数:4
相关论文
共 50 条
  • [1] On Quasiperiodic Space Tilings, Inflation, and Dehn Invariants
    O. Ogievetsky
    Z. Papadopolos
    Discrete & Computational Geometry, 2001, 26 : 147 - 171
  • [2] On quasiperiodic space tilings, inflation, and Dehn invariants
    Ogievetsky, O
    Papadopolos, Z
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 26 (01) : 147 - 171
  • [3] A GEOMETRICAL APPROACH OF QUASIPERIODIC TILINGS
    OGUEY, C
    DUNEAU, M
    KATZ, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) : 99 - 118
  • [4] Local rules for quasiperiodic tilings
    Le, TTQ
    MATHEMATICS OF LONG-RANGE APERIODIC ORDER, 1997, 489 : 331 - 366
  • [5] Generalized quasiperiodic Rauzy tilings
    Vidal, J
    Mosseri, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (18): : 3927 - 3938
  • [6] Hexagonal and Trigonal Quasiperiodic Tilings
    Coates, Sam
    Koga, Akihisa
    Matsubara, Toranosuke
    Tamura, Ryuji
    Sharma, Hem Raj
    Mcgrath, Ronan
    Lifshitz, Ron
    ISRAEL JOURNAL OF CHEMISTRY, 2024, 64 (10-11)
  • [7] Quasiperiodic tilings in hyperbolic space
    Lueck, Reinhard
    14TH INTERNATIONAL CONFERENCE ON QUASICRYSTALS, 2020, 1458
  • [8] Quasiperiodic tilings in a magnetic field
    Vidal, J
    Mosseri, R
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 334 : 130 - 136
  • [9] Penrose tilings, quasicrystals, and wavelets
    Antoine, JP
    Jacques, L
    Vandergheynst, P
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII, 1999, 3813 : 28 - 39
  • [10] QUASIPERIODIC TILINGS OBTAINED BY PROJECTION.
    Katz, Andre
    Duneau, Michel
    1600, (20):