On multikink states described by the nonlocal sine-Gordon equation

被引:9
|
作者
Alfimov, GL [1 ]
Korolev, VG [1 ]
机构
[1] Lukin Res Inst Phys Problems, Moscow 103460, Russia
基金
俄罗斯基础研究基金会;
关键词
nonlocality; sine-Gordon; multikink; kink-binding;
D O I
10.1016/S0375-9601(98)00544-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It was found recently that nonlocal non-dissipative generalizations of the sine-Gordon model may describe coherent multikink states. In this paper the problem of classification of such nonlocal states is considered for a model kernel of the integral operator. Rigorous results concerning a number of possible forms of these multikink states are set forth and the coding for such states is suggested. The exact statements are confirmed by results of numerical analysis. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:429 / 435
页数:7
相关论文
共 50 条
  • [1] Nonlocal topological solitons of the sine-Gordon equation
    Tang, Xiao-yan
    Liang, Zu-feng
    Wang, Jian-yong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (28)
  • [2] NUMERICAL STUDY OF A NONLOCAL SINE-GORDON EQUATION
    Alfimov, G.
    Pierantozzi, T.
    Vazquez, L.
    NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS, 2005, 153 : 121 - 128
  • [3] Multiple mixed solutions of the nonlocal sine-Gordon equation
    Li, Jian
    Duan, Junshen
    Li, Yan
    Li, Chuanzhong
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (04):
  • [4] Bound states of the elliptic sine-Gordon equation
    Novokshenov, VY
    Shagalov, AG
    PHYSICA D, 1997, 106 (1-2): : 81 - 94
  • [5] SINE-GORDON EQUATION
    HEYERHOFF, M
    MATHEMATICAL INTELLIGENCER, 1995, 17 (03): : 4 - &
  • [6] SINE-GORDON EQUATION
    RUBINSTE.J
    JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (01) : 258 - +
  • [7] A spectral method for dispersive solutions of the nonlocal Sine-Gordon equation
    Coclite, A.
    Lopez, L.
    Pellegrino, S. F.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 234 : 235 - 247
  • [8] DEFORMING SOME SPECIAL SOLUTIONS OF THE SINE-GORDON EQUATION TO THAT OF THE DOUBLE SINE-GORDON EQUATION
    LOU, SY
    NI, GJ
    PHYSICS LETTERS A, 1989, 140 (1-2) : 33 - 35
  • [9] Control for the sine-Gordon equation
    Petcu, M
    Temam, R
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (04): : 553 - 573
  • [10] An ultradiscretization of the sine-Gordon equation
    Isojima, S
    Murata, M
    Nobe, A
    Satsuma, J
    PHYSICS LETTERS A, 2004, 331 (06) : 378 - 386