Non-linear robust identification of a greenhouse model using multi-objective evolutionary algorithms

被引:38
|
作者
Herrero, J. M. [1 ]
Blasco, X. [1 ]
Martinez, M. [1 ]
Ramos, C. [1 ]
Sanchis, J. [1 ]
机构
[1] Univ Politecn Valencia, Dept Syst Engn & Control, Valencia 46022, Spain
关键词
D O I
10.1016/j.biosystemseng.2007.06.004
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This paper presents a non-linear climatic model (temperature and humidity), based on first-principles equations, of a greenhouse where roses are to be grown using hydroponic methods. Fitting of model parameters (15 in all) is based on measured data collected during summer in the Mediterranean area. A multi-objective optimisation procedure for estimating a set of non-linear models Theta(P) (Pareto optimal), considering simultaneously several optimisation criteria, is presented. A new multi-objective evolutionary algorithm, (sic)-MOGA, has been designed to converge towards ((Theta) over cap (P)* a reduced but well distributed representation of Theta(P) since good convergence and distribution of the Pareto front J(Theta(P)) is achieved by the algorithm. The set can (Theta) over cap (P)* be used as the basis to choose an optimal model that offers a good trade-off among different optimality criteria that have been established. The procedure proposed is applied to the identification and validation of the greenhouse model presented in the paper. (C) 2007 IAgrE. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:335 / 346
页数:12
相关论文
共 50 条
  • [1] Robust identification of non-linear greenhouse model using evolutionary algorithms
    Herrero, J. M.
    Blasco, X.
    Martinez, M.
    Ramos, C.
    Sanchis, J.
    CONTROL ENGINEERING PRACTICE, 2008, 16 (05) : 515 - 530
  • [2] Non-linear identification of a Peltier cell model using evolutionary multi-objective optimization
    Huilcapi, Victor
    Herrero, Juan Manuel
    Blasco, Xavier
    Martinez-Iranzo, Miguel
    IFAC PAPERSONLINE, 2017, 50 (01): : 4448 - 4453
  • [3] Comparative Study of Evolutionary Multi-objective Optimization Algorithms for a Non-linear Greenhouse Climate Control Problem
    Ghoreishi, Seyyedeh Newsha
    Sorensen, Jan Corfixen
    Jorgensen, Bo Norregaard
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 1909 - 1917
  • [4] Robust design optimisation using multi-objective evolutionary algorithms
    Lee, D. S.
    Gonzalez, L. F.
    Periaux, J.
    Srinivas, K.
    COMPUTERS & FLUIDS, 2008, 37 (05) : 565 - 583
  • [5] Non-linear robust identification using evolutionary algorithms Application to a biomedical process
    Herrero, J. M.
    Blasco, X.
    Martinez, M.
    Ramos, C.
    Sanchis, J.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2008, 21 (08) : 1397 - 1408
  • [6] Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms
    Hu, Haigen
    Xu, Lihong
    Wei, Ruihua
    Zhu, Bingkun
    SENSORS, 2011, 11 (06) : 5792 - 5807
  • [7] Non-linear robust identification of a lead acid battery model using mu.ltiobjective evolutionary algorithms
    Pajares, Alberto
    Blasco, Xavier
    Manuel Herrero, Juan
    Simarro, Raul
    IFAC PAPERSONLINE, 2017, 50 (01): : 4466 - 4471
  • [8] An effective model of multiple multi-objective evolutionary algorithms with the assistance of regional multi-objective evolutionary algorithms: VIPMOEAs
    Cheshmehgaz, Hossein Rajabalipour
    Desa, Mohamad Ishak
    Wibowo, Antoni
    APPLIED SOFT COMPUTING, 2013, 13 (05) : 2863 - 2895
  • [9] New model for multi-objective evolutionary algorithms
    Zheng, Bojin
    Li, Yuanxiang
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 4, PROCEEDINGS, 2007, 4490 : 1037 - +
  • [10] Identification of multiple gene subsets using multi-objective evolutionary algorithms
    Reddy, AR
    Deb, K
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2003, 2632 : 623 - 637