Optical Design and Optimization of Parabolic Dish Solar Concentrator with a Cavity Hybrid Receiver

被引:5
|
作者
Blazquez, R. [1 ]
Carballo, J. [1 ]
Silva, M. [2 ]
机构
[1] CTAER Solar Dept, Paraje Retamares S-N, Tabernas 04200, Almeria, Spain
[2] Univ Seville, Dept Energy Engn, Seville, Spain
关键词
D O I
10.1063/1.4949149
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the main goals of the BIOSTIRLING-4SKA project, funded by the European Commission, is the development of a hybrid Dish-Stirling system based on a hybrid solar-gas receiver, which has been designed by the Swedish company Cleanergy. A ray tracing study, which is part of the design of this parabolic dish system, is presented in this paper. The study pursues the optimization of the concentrator and receiver cavity geometry according to the requirements of flux distribution on the receiver walls set by the designer of the hybrid receiver. The ray-tracing analysis has been performed with the open source software Tonatiuh, a ray-tracing tool specifically oriented to the modeling of solar concentrators.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Optical analysis and optimization of parabolic dish solar concentrator with a cavity receiver
    Li, Huairui
    Huang, Weidong
    Huang, Farong
    Hu, Peng
    Chen, Zeshao
    SOLAR ENERGY, 2013, 92 : 288 - 297
  • [2] Mirror rearrangement optimization for uniform flux distribution on the cavity receiver of solar parabolic dish concentrator system
    Yan, Jian
    Peng, You-duo
    Cheng, Zi-ran
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (11) : 3588 - 3614
  • [3] An experimental study on energy and exergy performance of a cavity receiver for solar parabolic dish concentrator
    Thirunavukkarasu, V.
    Sornanathan, M.
    Cheralathan, M.
    INTERNATIONAL JOURNAL OF EXERGY, 2017, 23 (02) : 129 - 148
  • [4] Thermal performance analysis of a Solar parabolic dish concentrator system with modified cavity receiver
    Kumar, Varinder
    Bopche, Santosh
    WORLD JOURNAL OF ENGINEERING, 2021, 18 (02) : 169 - 193
  • [5] Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system
    Yan, Jian
    Peng, You-duo
    Cheng, Zi-ran
    RENEWABLE ENERGY, 2018, 129 : 431 - 445
  • [6] Radiation performance of dish solar concentrator/cavity receiver systems
    Shuai, Yong
    Xia, Xin-Lin
    Tan, He-Ping
    SOLAR ENERGY, 2008, 82 (01) : 13 - 21
  • [7] Optical performance of a solar dish concentrator/receiver system: Influence of geometrical and surface properties of cavity receiver
    Li, Sha
    Xu, Guoqiang
    Luo, Xiang
    Quan, Yongkai
    Ge, Yunting
    ENERGY, 2016, 113 : 95 - 107
  • [8] Effect of aspect ratio on thermal performance of cavity receiver for solar parabolic dish concentrator: An experimental study
    Venkatachalam, Thirunavukkarasu
    Cheralathan, M.
    RENEWABLE ENERGY, 2019, 139 : 573 - 581
  • [9] Prediction and optimization of the performance of parabolic solar dish concentrator with sphere receiver using analytical function
    Huang, Weidong
    Huang, Farong
    Hu, Peng
    Chen, Zeshao
    RENEWABLE ENERGY, 2013, 53 : 18 - 26
  • [10] Effects of geometrical parameters of a dish concentrator on the optical performance of a cavity receiver in a solar dish-Stirling system
    Yan, Jian
    Cheng, Zi-ran
    Peng, You-duo
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (06) : 2152 - 2168