Geometric Phase of Time-Dependent Superconducting Qubit

被引:2
|
作者
Zeng, G. R. [1 ]
Jiang, Yanyan [2 ]
Chen, Z. Q. [3 ]
Yu, Yanxia [4 ]
机构
[1] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 330022, Peoples R China
[2] Anqing Teachers Coll, Dept Phys, Anqing 246011, Peoples R China
[3] Jinggangshan Univ, Coll Sci, Jian 343009, Jiangxi, Peoples R China
[4] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
关键词
Geometric phase; Solid-state qubit; Invariant operator; QUANTUM STATE; MIXED-STATE;
D O I
10.1007/s10773-014-2362-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Geometric phases are studied in terms of invariant operator for a time-dependent superconducting qubit. The results show that the geometric phase depends on the dipole interaction strength between the qubit and a microwave field of frequency and phase, which provides a clue to realize the geometric quantum computation in the experiments.
引用
收藏
页码:1617 / 1626
页数:10
相关论文
共 50 条
  • [1] Geometric Phase of Time-Dependent Superconducting Qubit
    G. R. Zeng
    Yanyan Jiang
    Z. Q. Chen
    Yanxia Yu
    International Journal of Theoretical Physics, 2015, 54 : 1617 - 1626
  • [2] Geometric Phase in a Time-Dependent System with ℑ(Ω) Algebra Structure
    Zhao-Xian Yu
    Zhi-Yong Jiao
    Xiang-Gui Li
    International Journal of Theoretical Physics, 2009, 48
  • [3] Geometric Phase in a Time-Dependent System with Laguerre Polynomial State
    Wang, An-Ling
    Liu, Fu-Ping
    Yu, Zhao-Xian
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (03) : 531 - 535
  • [4] GEOMETRIC PHASE IN A GENERALIZED TIME-DEPENDENT GIANT SPIN MODEL
    Wang, An-Ling
    Liu, Fu-Ping
    Yu, Zhao-Xian
    Jiao, Zhi-Yong
    MODERN PHYSICS LETTERS B, 2009, 23 (24): : 2847 - 2852
  • [5] Geometric Phase in a Time-Dependent System with J(Ω) Algebra Structure
    Yu, Zhao-Xian
    Jiao, Zhi-Yong
    Li, Xiang-Gui
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (12) : 3416 - 3420
  • [6] Exact solutions of time-dependent Schrodinger equations and geometric phase
    Suzko, AA
    Velicheva, EP
    PHYSICS OF ATOMIC NUCLEI, 1998, 61 (10) : 1773 - 1777
  • [7] Fitness in time-dependent environments includes a geometric phase contribution
    Tanase-Nicola, Sorin
    Nemenman, Ilya
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (71) : 1354 - 1362
  • [8] Geometric Phase in a Time-Dependent System with Higgs Algebra Structure
    Zhao-Xian Yu
    Zhi-Yong Jiao
    Xiang-Gui Li
    International Journal of Theoretical Physics, 2009, 48 : 2916 - 2919
  • [9] Geometric Phase in a Time-Dependent System with Higgs Algebra Structure
    Yu, Zhao-Xian
    Jiao, Zhi-Yong
    Li, Xiang-Gui
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (10) : 2916 - 2919
  • [10] Geometric Phase in a Time-Dependent Bose-Fermi System
    Zhao-Xian Yu
    Zhi-Yong Jiao
    International Journal of Theoretical Physics, 2010, 49 : 526 - 530