Microstructure of porous composite electrodes generated by the discrete element method

被引:43
|
作者
Liu, Xiaoxing [1 ]
Martin, Christophe L. [1 ]
Delette, Gerard [2 ]
Laurencin, Jerome [2 ]
Bouvard, Didier [1 ]
Delahaye, Thibaud [2 ]
机构
[1] CNRS, Grenoble INP UJF GPM2, Lab SIMAP, F-38402 St Martin Dheres, France
[2] CEA Grenoble, DRT LITEN, F-38054 Grenoble 9, France
关键词
Sintering; SOFC; Discrete simulation; OXIDE FUEL-CELLS; ANODE MICROSTRUCTURE; PORE-SIZE; SOFC; MODEL; RECONSTRUCTION; SIMULATIONS; PERFORMANCE; REDUCTION; ZIRCONIA;
D O I
10.1016/j.jpowsour.2010.09.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Typical microstructures of LSM/YSZ NiO/YSZ Ni/YSZ composite electrodes are simulated by the discrete element method The numerical microstructures are generated by taking into account in a realistic manner the sintering process This allows complex microstructures such as Mayers or microstructures containing pore formers to be obtained NiO particles in the NiO/YSZ composite electrodes are reduced to Ni Reduction is carried out with the discrete element formalism which allows particle rearrangement to be taken Into account We show that the mechanical percolation of the YSZ phase plays an important role during the reduction of NiO The various numerical microstructures generated by sintering and reduction are analyzed to evaluate important microstructural features such as macroscopic porosity pore surface area and Triple Phase Boundary length (c) 2010 Elsevier BV All rights reserved
引用
收藏
页码:2046 / 2054
页数:9
相关论文
共 50 条
  • [1] Analysis of Magnetic Properties of Soft Magnetic Composite Using Magnetic Circuits Generated by Discrete Element Method
    Sato, Hayaho
    Kotani, Junichi
    Sasaki, Yuma
    Tomioka, Shohei
    Takizawa, Toshiyuki
    Ueda, Yuki
    Kimiya, Hirokazu
    Igarashi, Hajime
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (12)
  • [2] Revelling pore microstructure impacts on the compressive strength of porous proppant based on finite and discrete element method
    Liao, Zijia
    Rabiee, Hesamoddin
    Ge, Lei
    Li, Xiaogang
    Yang, Zhaozhong
    Xue, Qi
    Shen, Chao
    Wang, Hao
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 211 : 72 - 81
  • [3] Combining the modified discrete element method with the virtual element method for fracturing of porous media
    Nilsen, Halvor Moll
    Larsen, Idar
    Raynaud, Xavier
    COMPUTATIONAL GEOSCIENCES, 2017, 21 (5-6) : 1059 - 1073
  • [4] Combining the modified discrete element method with the virtual element method for fracturing of porous media
    Halvor Møll Nilsen
    Idar Larsen
    Xavier Raynaud
    Computational Geosciences, 2017, 21 : 1059 - 1073
  • [5] Effect of Microstructure on Thermal Conduction within Lithium-Ion Battery Electrodes using Discrete Element Method Simulations
    Sangros, Clara
    Schilde, Carsten
    Kwade, Arno
    Energy Technology, 2016, 4 (12) : 1611 - 1619
  • [6] Establishment of Microstructure of Asphalt Mixtures Based on Discrete Element Method
    Wang, Keli
    Yang, Jun
    Lu, Qing
    Gu, Xingyu
    Chen, Xianhua
    JOURNAL OF TESTING AND EVALUATION, 2014, 42 (05) : 1191 - 1202
  • [7] Microstructure evolution during sintering: discrete element method approach
    Engelke, Lukas
    Brendel, Lothar
    Wolf, Dietrich E.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (08) : 5022 - 5032
  • [8] Simulation of the disintegration comminution of a particle composite by the discrete element method
    Schubert, W
    Khanal, M
    Tomas, J
    CHEMIE INGENIEUR TECHNIK, 2004, 76 (1-2) : 73 - 76
  • [9] Study of the cold compaction of composite powders by the discrete element method
    Martin, CL
    Bouvard, D
    ACTA MATERIALIA, 2003, 51 (02) : 373 - 386
  • [10] Discrete element modeling-A promising method for refractory microstructure design
    Moreira, M. H.
    Cunha, T. M.
    Campos, M. G. G.
    Santos, M. F.
    Santos, T., Jr.
    Andre, D.
    Pandolfelli, V. C.
    AMERICAN CERAMIC SOCIETY BULLETIN, 2020, 99 (02): : 22 - 28