Gauge groups and bialgebroids

被引:5
|
作者
Han, Xiao [1 ,2 ]
Landi, Giovanni [3 ,4 ,5 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] IMPAN, Jana I Jedrzeja Sniadeckich 8, PL-00656 Warsaw, Poland
[3] Univ Trieste, Via A Valerio 12-1, I-34127 Trieste, Italy
[4] Inst Geometry & Phys IGAP, Trieste, Italy
[5] Ist Nazl Fis Nucl, Trieste, Italy
关键词
Quantum principal bundles; Gauge theory; Hopf algebroids; Crossed modules; GALOIS OBJECTS; HOPF; EXTENSIONS; ALGEBRAS;
D O I
10.1007/s11005-021-01482-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Ehresmann-Schauenburg bialgebroid of a noncommutative principal bundle as a quantization of the gauge groupoid of a classical principal bundle. We show that the gauge group of the noncommutative bundle is isomorphic to the group of bisections of the bialgebroid, and we give a crossed module structure for the bisections and the automorphisms of the bialgebroid. Examples include: Galois objects of Taft algebras, a monopole bundle over a quantum sphere and a not faithfully flat Hopf-Galois extension of commutative algebras. For each of the latter two examples, there is in fact a suitable invertible antipode for the bialgebroid making it a Hopf algebroid.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] Gauge groups and bialgebroids
    Xiao Han
    Giovanni Landi
    Letters in Mathematical Physics, 2021, 111
  • [2] Twisted bialgebroids versus bialgebroids from a Drinfeld twist
    Borowiec, Andrzej
    Pachol, Anna
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (05)
  • [3] (Hopf) Bialgebroids
    Bohm, Gabriella
    HOPF ALGEBRAS AND THEIR GENERALIZATIONS FROM A CATEGORY THEORETICAL POINT OF VIEW, 2018, 2226 : 59 - 73
  • [4] Comment on 'Twisted bialgebroids versus bialgebroids from a Drinfeld twist'
    Skoda, Zoran
    Stojic, Martina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (10)
  • [5] GAUGE GROUPS
    KOSINSKI, P
    REMBIELINSKI, J
    TYBOR, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (07): : 1187 - 1190
  • [6] The local structure of Lie bialgebroids
    Liu, ZJ
    Xu, P
    LETTERS IN MATHEMATICAL PHYSICS, 2002, 61 (01) : 15 - 28
  • [7] SPLITTING OF GAUGE GROUPS
    Kishimoto, Daisuke
    Kono, Akira
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (12) : 6715 - 6731
  • [8] Restrictions on gauge groups in noncommutative gauge theory
    Matsubara, K
    PHYSICS LETTERS B, 2000, 482 (04) : 417 - 419
  • [9] Integration of Lie bialgebroids
    Mackenzie, KCH
    Xu, P
    TOPOLOGY, 2000, 39 (03) : 445 - 467
  • [10] COENDOMORPHISM LEFT BIALGEBROIDS
    Ardizzoni, A.
    El Kaoutit, L.
    Menini, C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (03)