Hamming Distance Kernelisation via Topological Quantum Computation

被引:2
|
作者
Di Pierro, Alessandra [1 ]
Mengoni, Riccardo [1 ]
Nagarajan, Rajagopal [2 ]
Windridge, David [2 ]
机构
[1] Univ Verona, Dipartimento Informat, Verona, Italy
[2] Middlesex Univ, Dept Comp Sci, London, England
关键词
Quantum computing; Topology; Kernel function; KNOTS;
D O I
10.1007/978-3-319-71069-3_21
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a novel approach to computing Hamming distance and its kernelisation within Topological Quantum Computation. This approach is based on an encoding of two binary strings into a topological Hilbert space, whose inner product yields a natural Hamming distance kernel on the two strings. Kernelisation forges a link with the field of Machine Learning, particularly in relation to binary classifiers such as the Support Vector Machine (SVM). This makes our approach of potential interest to the quantum machine learning community.
引用
收藏
页码:269 / 280
页数:12
相关论文
共 50 条
  • [1] Two quantum protocols for secure hamming distance computation
    Zhen-wan Peng
    Run-hua Shi
    Pan-hong Wang
    Shun Zhang
    Quantum Information Processing, 2019, 18
  • [2] A novel quantum protocol for secure hamming distance computation
    Peng, Zhen-wan
    Shi, Run-hua
    Ding, Ran
    Zhang, Fei-fan
    QUANTUM INFORMATION PROCESSING, 2024, 23 (05)
  • [3] Two quantum protocols for secure hamming distance computation
    Peng, Zhen-wan
    Shi, Run-hua
    Wang, Pan-hong
    Zhang, Shun
    QUANTUM INFORMATION PROCESSING, 2019, 18 (01)
  • [4] On private Hamming distance computation
    Wong, Kok-Seng
    Kim, Myung Ho
    JOURNAL OF SUPERCOMPUTING, 2014, 69 (03): : 1123 - 1138
  • [5] On private Hamming distance computation
    Kok-Seng Wong
    Myung Ho Kim
    The Journal of Supercomputing, 2014, 69 : 1123 - 1138
  • [6] Topological Quantum Computation via the Quantum Tunneling Effect
    Kou, Su-Peng
    PHYSICAL REVIEW LETTERS, 2009, 102 (12)
  • [7] Hamming Distance Computation in Unreliable Resistive Memory
    Chen, Zehui
    Schoeny, Clayton
    Dolecek, Lara
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (11) : 5013 - 5027
  • [8] Quantum computation via Floquet topological edge modes
    Bomantara, Raditya Weda
    Gong, Jiangbin
    PHYSICAL REVIEW B, 2018, 98 (16)
  • [9] Hamming distance and the onset of quantum criticality
    Yi, Tian-Cheng
    Scalettar, Richard T.
    Mondaini, Rubem
    PHYSICAL REVIEW B, 2022, 106 (20)
  • [10] A Quantum Algorithm for Evaluating the Hamming Distance
    Zidan, Mohammed
    Eldin, Manal G.
    Shams, Mahmoud Y.
    Tolan, Mohamed
    Abd-Elhamed, Ayman
    Abdel-Aty, Mahmoud
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 1065 - 1078