Weyl-Wigner correspondence in two space dimensions

被引:2
|
作者
Dahl, J. P.
Varro, S.
Wolf, A. [1 ]
Schleich, W. P.
机构
[1] Univ Ulm, Inst Quantenphys, D-89069 Ulm, Germany
[2] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[3] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark
基金
匈牙利科学研究基金会;
关键词
D O I
10.1080/09500340701336535
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider Wigner functions in two space dimensions. In particular, we focus on Wigner functions corresponding to energy eigenstates of a non-relativistic particle moving in two dimensions in the absence of a potential. With the help of the Weyl-Wigner correspondence we first transform the eigenvalue equations for energy and angular momentum into phase space. As a result we arrive at partial differential equations in phase space which determine the corresponding Wigner function. We then solve the resulting equations using appropriate coordinates.
引用
收藏
页码:2017 / 2032
页数:16
相关论文
共 50 条
  • [1] Preserving Coherence of Coherent State Studied via Weyl-Wigner Correspondence
    Fan Hong-Yi
    Lue Cui-Hong
    Xia Yun-Jie
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 54 (02) : 244 - 246
  • [2] Preserving Coherence of Coherent State Studied via Weyl-Wigner Correspondence
    范洪义
    吕翠红
    夏云杰
    CommunicationsinTheoreticalPhysics, 2010, 54 (08) : 244 - 246
  • [3] Classical Weyl-Wigner correspondence of optical field's phase operator
    Wu, Wei-Feng
    Fan, Hong-Yi
    OPTIK, 2016, 127 (22): : 10875 - 10878
  • [4] An elementary aspect of the Weyl-Wigner representation
    Dahl, JP
    Schleich, WP
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2003, 51 (2-3): : 85 - 91
  • [5] The s-parameterized Weyl-Wigner correspondence in the entangled form and its applications
    范洪义
    胡利云
    袁洪春
    Chinese Physics B, 2010, (06) : 56 - 61
  • [6] The s-parameterized Weyl-Wigner correspondence in the entangled form and its applications
    Fan Hong-Yi
    Hu Li-Yun
    Yuan Hong-Chun
    CHINESE PHYSICS B, 2010, 19 (06)
  • [7] Weyl-Wigner representation of canonical equilibrium states
    Nicacio, F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (05)
  • [8] Weyl-Wigner formulation of noncommutative quantum mechanics
    Bastos, Catarina
    Bertolami, Orfeu
    Dias, Nuno Costa
    Prata, Joao Nuno
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
  • [9] Generalized Weyl-Wigner map and Vey quantum mechanics
    Dias, NC
    Prata, JN
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (12) : 5565 - 5579
  • [10] AN EXTENDED WEYL-WIGNER TRANSFORMATION FOR SPECIAL FINITE SPACES
    GALETTI, D
    PIZA, AFRD
    PHYSICA A, 1988, 149 (1-2): : 267 - 282