Electrochemical behavior of nanostructured LiV3O8 in aqueous LiNO3 solution

被引:11
|
作者
Liu, Li [1 ,2 ,3 ]
Tian, Fanghua [1 ,2 ]
Yang, Zhenhua [1 ,2 ,3 ]
Wang, Xingyan [1 ,2 ]
Zhou, Meng [1 ,2 ]
Wang, Xianyou [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Chem, Minist Educ, Key Lab Environm Friendly Chem & Applicat, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Key Lab Mat Design & Preparat Technol Hunan Prov, Xiangtan 411105, Peoples R China
[3] Xiangtan Univ, Fac Mat Optoelect & Phys, Xiangtan 411105, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Inorganic compounds; Nanostructures; X-ray diffraction; Electrochemical properties; RECHARGEABLE LITHIUM BATTERY; GOOD CYCLING PERFORMANCE; ION BATTERY; SOLUTION ELECTROLYTE; ANODE MATERIAL; LIMN2O4; CATHODE; STABILITY; STORAGE; LICOO2;
D O I
10.1016/j.jpcs.2011.09.001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the large number of studies on the electrochemical behavior of LiV3O8 as a cathode material in nonaqueous lithium ion batteries, little information is available about the electrochemical behavior of LiV3O8 as an anode material in aqueous rechargeable lithium batteries. In this work, nanostructured LiV3O8 is successfully prepared using a low-temperature solid-state method. The electrochemical properties of the LiV3O8 electrode in 1 M, 5 M, and saturated LiNO3 aqueous electrolytes have been characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge experiments. The results show that LiV3O8 electrode in saturated LiNO3 electrolyte exhibits good electrochemical performance in terms of specific capacity and electrochemical cycling performance. LiV3O8 electrode can be reversibly cycled in saturated LiNO3 aqueous electrolyte for 300 cycles at a rate of 0.5 C (300 mA g(-1) is assumed to be 1 C rate) with impressive specific capacities. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1495 / 1500
页数:6
相关论文
共 50 条
  • [1] Electrochemical properties of nanostructured Li1.2V3O8 in aqueous LiNO3 solution
    Stojkovic, Ivana
    Cvjeticanin, Nikola
    Mitric, Miodrag
    Mentus, Slavko
    ELECTROCHIMICA ACTA, 2011, 56 (18) : 6469 - 6473
  • [2] Electrochemical performance of high specific capacity of lithium-ion cell LiV3O8//LiMn2O4 with LiNO3 aqueous solution electrolyte
    Zhao, Mingshu
    Zheng, Qingyang
    Wang, Fei
    Dai, Weimin
    Song, Xiaoping
    ELECTROCHIMICA ACTA, 2011, 56 (11) : 3781 - 3784
  • [3] Investigation of the Lithium Intercalation Behavior of Nanosheets of LiV3O8 in an Aqueous Solution
    Heli, H.
    Yadegari, H.
    Jabbari, A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (21): : 10889 - 10897
  • [4] Electrochemical Behavior of Li/LiV3O8 Secondary Cells
    Bak, Hyo Rim
    Lee, Jae Ha
    Kim, Bok Ki
    Yoon, Woo Young
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (02) : 195 - 199
  • [5] Electrochemical behavior of Li/LiV3O8 secondary cells
    Hyo Rim Bak
    Jae Ha Lee
    Bok Ki Kim
    Woo Young Yoon
    Electronic Materials Letters, 2013, 9 : 195 - 199
  • [6] Synthesis and electrochemical properties of LiV3O8
    Li, HX
    Jiao, LF
    Yuan, HT
    Ming, Z
    Wang, YM
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2005, 21 (12) : 1865 - 1868
  • [7] Electrochemical intercalation of lithium ions into LiV3O8 in an aqueous electrolyte
    Wang, G. J.
    Qu, Q. T.
    Wang, B.
    Shi, Y.
    Tian, S.
    Wu, Y. P.
    Holze, R.
    JOURNAL OF POWER SOURCES, 2009, 189 (01) : 503 - 506
  • [8] Synthesis and electrochemical studies on LiV3O8
    A. Sakunthala
    M. V. Reddy
    S. Selvasekarapandian
    B. V. R. Chowdari
    H. Nithya
    P. Chirstopher Selvin
    Journal of Solid State Electrochemistry, 2010, 14 : 1847 - 1854
  • [9] Synthesis and electrochemical studies on LiV3O8
    Sakunthala, A.
    Reddy, M. V.
    Selvasekarapandian, S.
    Chowdari, B. V. R.
    Nithya, H.
    Selvin, P. Chirstopher
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (10) : 1847 - 1854
  • [10] Low temperature synthesis and electrochemical behavior of LiV3O8 cathode
    Kannan, A. M.
    Manthiram, A.
    JOURNAL OF POWER SOURCES, 2006, 159 (02) : 1405 - 1408