A binary water wave optimization for feature selection

被引:33
|
作者
Ibrahim, Abdelmonem M. [1 ,3 ]
Tawhid, M. A. [3 ]
Ward, Rabab K. [2 ]
机构
[1] Al Azhar Univ, Fac Sci, Dept Math, Assiut Branch, Assiut, Egypt
[2] Univ British Columbia, Elect & Comp Engn Dept, Vancouver, BC V6T 1Z4, Canada
[3] Thompson Rivers Univ, Fac Sci, Dept Math & Stat, Kamloops, BC V2C 0C8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Classification; Feature selection; Metaheuristics; Rough set theory; Water wave optimization; Wrapper approaches; PARTICLE SWARM OPTIMIZATION; ROUGH SET APPROACH; ATTRIBUTE REDUCTION; INTELLIGENCE; ALGORITHM; NETWORKS; SEARCH;
D O I
10.1016/j.ijar.2020.01.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A search method that finds a minimal subset of features (over a feature space) that yields maximum classification accuracy is proposed. This method employs rough set theory (RST) along with a newly introduced binary version of the water wave optimization approach (WWO) which is denoted by BWWO. WWO simulates the phenomena of water waves, such as propagation, refraction, and breaking and is one of the newest nature inspired methods for global optimization problems. In our approach, BWWO utilizes the phenomena of water waves propagation, refraction, and breaking in a binary version. Two main experiments based on the rough set approach and wrapper method as a part of the objective function are carried out to verify the performance of the proposed algorithm. In the first experiment, the effectiveness of the proposed approach based on RST is demonstrated on 16 different datasets. The proposed approach is compared with various typical attribute reduction methods and popular optimizers in the literature, such as ant colony, nonlinear great deluge algorithm, scatter search and others. For the second experiment, a feature subset that maximizes the classification accuracy (using cross-validated kNN classifier) with minimizing the number of selected features is obtained over 17 different datasets. In wrapper experiment BWWO is compared with the binary gray wolf optimization, binary particle swarm optimizer, binary cat swarm optimization, binary dragonfly algorithm and the binary bat algorithm. The computational results demonstrate the efficiency and effectiveness of the proposed approach in finding a minimal features subset that maximize the classification accuracy. Furthermore, Friedman test and Wilcoxon's rank-sum test are carried out at 5% significance level in this study. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:74 / 91
页数:18
相关论文
共 50 条
  • [1] Binary feature mask optimization for feature selection
    Lorasdagi, Mehmet E.
    Turali, Mehmet Y.
    Kozat, Suleyman S.
    Neural Computing and Applications, 2025, 37 (06) : 5155 - 5167
  • [2] Text Feature Selection Based on Water Wave Optimization Algorithm
    Chen, Hongwei
    Hou, Yajun
    Luo, Qixing
    Hu, Zhou
    Yan, Lingyu
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 546 - 551
  • [3] Binary arithmetic optimization algorithm for feature selection
    Min Xu
    Qixian Song
    Mingyang Xi
    Zhaorong Zhou
    Soft Computing, 2023, 27 : 11395 - 11429
  • [4] Binary coyote optimization algorithm for feature selection
    Thom de Souza, Rodrigo Clemente
    de Macedo, Camila Andrade
    Coelho, Leandro dos Santos
    Pierezan, Juliano
    Mariani, Viviana Cocco
    PATTERN RECOGNITION, 2020, 107
  • [5] Binary butterfly optimization approaches for feature selection
    Arora, Sankalap
    Anand, Priyanka
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 : 147 - 160
  • [6] Binary Anarchic Society Optimization for Feature Selection
    Kilic, Umit
    Sarac Essiz, Esra
    Kaya Keles, Mumine
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2023, 26 (3-4): : 351 - 364
  • [7] Binary Horse Optimization Algorithm for Feature Selection
    Moldovan, Dorin
    ALGORITHMS, 2022, 15 (05)
  • [8] Binary arithmetic optimization algorithm for feature selection
    Xu, Min
    Song, Qixian
    Xi, Mingyang
    Zhou, Zhaorong
    SOFT COMPUTING, 2023, 27 (16) : 11395 - 11429
  • [9] Binary Black Widow Optimization Approach for Feature Selection
    Keles, Mumine Kaya
    Kilic, Umit
    IEEE ACCESS, 2022, 10 : 95936 - 95948
  • [10] Binary Black Widow Optimization Approach for Feature Selection
    Keleş, Mümine Kaya
    Kiliç, Ümit
    IEEE Access, 2022, 10 : 95936 - 95948