A robust moving mesh method for spectral collocation solutions of time-dependent partial differential equations

被引:5
|
作者
Subich, Christopher J. [1 ]
机构
[1] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
关键词
Moving mesh; Spectral method; Adaptive grid; Burgers equation; ADAPTIVITY; SIMULATION;
D O I
10.1016/j.jcp.2015.04.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work extends the machinery of the moving mesh partial differential equation (MMPDE) method to the spectral collocation discretization of time-dependent partial differential equations. Unlike previous approaches which bootstrap the moving grid from a lower-order, finite-difference discretization, this work uses a consistent spectral collocation discretization for both the grid movement problem and the underlying, physical partial differential equation. Additionally, this work develops an error monitor function based on filtering in the spectral domain, which concentrates grid points in areas of locally poor resolution without relying on an assumption of locally steep gradients. This makes the MMPDE method more robust in the presence of rarefaction waves which feature rapid change in higher-order derivatives. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:297 / 311
页数:15
相关论文
共 50 条