Empirical Bayes estimators in hierarchical models with mixture priors

被引:0
|
作者
Rosenkranz, Gerd K. [1 ]
机构
[1] Med Univ Vienna, Ctr Med Stat Informat & Intelligent Syst, Inst Med Stat, A-1090 Vienna, Austria
基金
英国医学研究理事会;
关键词
Hierarchical model; subgroups; accuracy; shrinkage; mixture prior; CLINICAL-TRIALS; METAANALYSIS; INFERENCE; FORMULA; SIZE;
D O I
10.1080/02664763.2018.1450364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider subgroup analyses within the framework of hierarchical modeling and empirical Bayes (EB) methodology for general priors, thereby generalizing the normal-normal model. By doing this one obtains greater flexibility in modeling. We focus on mixture priors, that is, on the situation where group effects are exchangeable within clusters of subgroups only. We establish theoretical results on accuracy, precision, shrinkage and selection bias of EB estimators under the general priors. The impact of model misspecification is investigated and the applicability of the methodology is illustrated with datasets from the (medical) literature.
引用
收藏
页码:2958 / 2980
页数:23
相关论文
共 50 条