Polarization angle requirements for CMB B-mode experiments. Application to the LiteBIRD satellite

被引:4
|
作者
Vielva, P. [1 ]
Martinez-Gonzalez, E. [1 ]
Casas, F. J. [1 ]
Matsumura, T. [2 ]
Henrot-Versille, S. [3 ]
Komatsu, E. [2 ,4 ]
Aumont, J. [5 ]
Aurlien, R. [6 ]
Baccigalupi, C. [7 ,8 ,9 ]
Banday, A. J. [5 ]
Barreiro, R. B. [1 ]
Bartolo, N. [10 ,11 ,12 ]
Calabrese, E. [13 ]
Cheung, K. [14 ,15 ,16 ]
Columbro, F. [17 ,18 ]
Coppolecchia, A. [17 ,18 ]
de Bernardis, P. [17 ,18 ]
de Haan, T. [19 ]
de la Hoz, E. [1 ,20 ]
De Petris, M. [17 ,18 ]
Della Torre, S. [21 ]
Diego-Palazuelos, P. [1 ,20 ]
Eriksen, H. K. [6 ]
Errard, J. [22 ]
Finelli, F. [23 ,24 ]
Franceschet, C. [25 ,26 ]
Fuskeland, U. [6 ]
Galloway, M. [6 ]
Ganga, K. [22 ]
Gervasi, M. [21 ,27 ]
Genova-Santos, R. T. [28 ,29 ]
Ghigna, T. [2 ,30 ]
Gjerlow, E. [6 ]
Gruppuso, A. [23 ,24 ]
Hazumi, M. [2 ,19 ,31 ,32 ,33 ]
Herranz, D. [1 ]
Hivon, E. [34 ]
Kohri, K. [19 ]
Lamagna, L. [17 ,18 ]
Leloup, C. [22 ]
Macias-Perez, J. [35 ]
Masi, S. [17 ,18 ]
Matsuda, F. T. [32 ]
Morgante, G. [23 ]
Nakano, R. [32 ,36 ]
Nati, F. [21 ,37 ]
Natoli, P. [37 ,38 ]
Nerval, S. [39 ]
Odagiri, K. [23 ]
Oguri, S. [32 ]
机构
[1] UC, CSIC, Inst Fis Cantabria IFCA, Avenida Castros SN, Santander 39005, Spain
[2] Univ Tokyo, Kavli Inst Phys & Math Universe Kavli IPMU WPI, UTIAS, Kashiwa, Chiba 2778583, Japan
[3] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France
[4] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany
[5] Univ Toulouse, CNRS, UPS, CNES,IRAP, Toulouse, France
[6] Univ Oslo, Inst Theoret Astrophys, Blindern, Oslo, Norway
[7] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[8] INFN, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
[9] IFPU, Via Beirut 2, I-34151 Trieste, Italy
[10] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy
[11] INFN, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
[12] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy
[13] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3XQ, Wales
[14] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[15] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[16] Lawrence Berkeley Natl Lab LBNL, Computat Cosmol Ctr, Berkeley, CA 94720 USA
[17] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy
[18] INFN, Sez Roma, Ple A Moro 2, I-00185 Rome, Italy
[19] High Energy Accelerator Res Org KEK, Inst Particle & Nucl Studies IPNS, Tsukuba, Ibaraki 3050801, Japan
[20] Univ Cantabria, Dpto Fis Moderna, Avda Castros S-N, E-39005 Santander, Spain
[21] INFN, Sez Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy
[22] Univ Paris, CNRS, Astroparticule & Cosmol, F-75013 Paris, France
[23] OAS Bologna, INAF, Via Piero Gobetti 93-3, I-40129 Bologna, Italy
[24] INFN, Sez Bologna, Viale C Berti Pichat 6-2, I-40127 Bologna, Italy
[25] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[26] INFN, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
[27] Univ Milano Bicocca, Phys Dept, Pzza Sci 3, I-20126 Milan, Italy
[28] Inst Astrofis Canarias, E-38200 Tenerife, Canary Isl, Spain
[29] Univ La Laguna ULL, Dept Astrofis, E-38206 Tenerife, Spain
[30] Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England
[31] High Energy Accelerator Res Org KEK, Int Ctr Quantum Field Measurement Syst Studies Un, Tsukuba, Ibaraki 3050801, Japan
[32] Japan Aerosp Explorat Agcy JAXA, Inst Space & Astronaut Sci ISAS, Sagamihara, Kanagawa 2525210, Japan
[33] Grad Univ Adv Studies SOKENDAI, Miura, Kanagawa 2400115, Japan
[34] Sorbonne Univ, CNRS, Inst Astrophys Paris, Paris, France
[35] Univ Grenoble Alpes, CNRS, IN2P3, LPSC, 53 Ave Martyrs, F-38000 Grenoble, France
[36] Univ Tokyo, Dept Astron, Tokyo 1130033, Japan
[37] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy
[38] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy
[39] David A Dunlap Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada
[40] Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France
[41] Italian Space Agcy, Space Sci Data Ctr, Via Politecn, I-00133 Rome, Italy
[42] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy
[43] Univ Manchester, Sch Nat Sci, Jodrell Bank Ctr Astrophys, Dept Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England
[44] Osservatorio Astron Cagliari, INAF, Via Sci 5, I-09047 Selargius, Italy
[45] Univ Paris, Sorbonne Univ, Univ PSL, CNRS,ENS,Ecole Normale Super,Lab Phys, F-75005 Paris, France
[46] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada
[47] Kagawa Coll, Natl Inst Technol, Takamatsu, Kagawa, Japan
[48] INFN, Sez Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
[49] Univ Pisa, Dipartimento Fis, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[50] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol KIPAC, Menlo Pk, CA 94025 USA
基金
瑞典研究理事会;
关键词
CMBR detectors; CMBR polarisation; gravitational waves and CMBR polarization; INFLATION; RADIATION;
D O I
10.1088/1475-7516/2022/04/029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A methodology to provide the polarization angle requirements for different sets of detectors, at a given frequency of a CMB polarization experiment, is presented. The uncertainties in the polarization angle of each detector set are related to a given bias on the tensor-to-scalar ratio r parameter. The approach is grounded in using a linear combination of the detector sets to obtain the CMB polarization signal. In addition, assuming that the uncertainties on the polarization angle are in the small angle limit (lower than a few degrees), it is possible to derive analytic expressions to establish the requirements. The methodology also accounts for possible correlations among detectors, that may originate from the optics, wafers, etc. The approach is applied to the LiteBIRD space mission. We show that, for the most restrictive case (i.e., full correlation of the polarization angle systematics among detector sets), the requirements on the polarization angle uncertainties are of around 1 arcmin at the most sensitive frequency bands (i.e., approximate to 150 GHz) and of few tens of arcmin at the lowest (i.e., approximate to 40 GHz) and highest (i.e., approximate to 400 GHz) observational bands. Conversely, for the least restrictive case (i.e., no correlation of the polarization angle systematics among detector sets), the requirements are approximate to 5 times less restrictive than for the previous scenario. At the global and the telescope levels, polarization angle knowledge of a few arcmins is sufficient for correlated global systematic errors and can be relaxed by a factor of two for fully uncorrelated errors in detector polarization angle. The reported uncertainty levels are needed in order to have the bias on r due to systematics below the limit established by the LiteBIRD collaboration.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Concept design of the LiteBIRD satellite for CMB B-mode polarization
    Sekimoto, Y.
    Ade, P.
    Arnold, K.
    Aumont, J.
    Austermann, J.
    Baccigalupi, C.
    Banday, A.
    Banerji, R.
    Basak, S.
    Beckman, S.
    Bersanelli, M.
    Borrill, J.
    Boulanger, F.
    Brown, M. L.
    Bucher, M.
    Calabrese, E.
    Casas, F. J.
    Challinor, A.
    Chinone, Y.
    Columbro, F.
    Cukierman, A.
    Curtis, D.
    de Bernardis, P.
    de Petris, M.
    Dobbs, M.
    Dotani, T.
    Duband, L.
    Duval, Jm.
    Ducout, A.
    Ebisawa, K.
    Elleot, T.
    Eriksen, H.
    Errard, J.
    Flauger, R.
    Franceschet, C.
    Fuskeland, U.
    Ganga, K.
    Gao, J. R.
    Ghigna, T.
    Grain, J.
    Gruppuso, A.
    Halverson, N.
    Hargrave, P.
    Hasebe, T.
    Hasegawa, M.
    Hattori, M.
    Hazumi, M.
    Henrot-Versille, S.
    Hill, C.
    Hirota, Y.
    SPACE TELESCOPES AND INSTRUMENTATION 2018: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2018, 10698
  • [2] Simulation of the cosmic ray effects for the LiteBIRD satellite observing the CMB B-mode polarization
    Tominaga, Mayu
    Tsujimoto, Masahiro
    Stevere, Samantha Lynn
    Ghigna, Tommaso
    Ishino, Hirokazu
    Ebisawa, Ken
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY X, 2020, 11453
  • [3] Concept Design of Low Frequency Telescope for CMB B-mode Polarization satellite LiteBIRD
    Sekimoto, Y.
    Ade, P. A. R.
    Adler, A.
    Allys, E.
    Arnold, K.
    Auguste, D.
    Aumont, J.
    Aurlien, R.
    Austermann, J.
    Baccigalupi, C.
    Banday, A. J.
    Banerji, R.
    Barreiro, R. B.
    Basak, S.
    Beall, J.
    Beck, D.
    Beckman, S.
    Bermejo, J.
    de Bernardis, P.
    Bersanelli, M.
    Bonis, J.
    Borrill, J.
    Boulanger, F.
    Bounissou, S.
    Brilenkov, M.
    Brown, M.
    Bucher, M.
    Calabrese, E.
    Campeti, P.
    Carones, A.
    Casas, F. J.
    Challinor, A.
    Chan, V
    Cheung, K.
    Chinone, Y.
    Cliche, J. F.
    Colombo, L.
    Columbro, F.
    Cubas, J.
    Cukierman, A.
    Curtis, D.
    D'Alessandro, G.
    Dachlythra, N.
    De Petris, M.
    Dickinson, C.
    Diego-Palazuelos, P.
    Dobbs, M.
    Dotani, T.
    Duband, L.
    Duff, S.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY X, 2020, 11453
  • [4] Impact of modulation on CMB B-mode polarization experiments
    Brown, Michael L.
    Challinor, Anthony
    North, Chris E.
    Johnson, Bradley R.
    O'Dea, Daniel
    Sutton, David
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 397 (02) : 634 - 656
  • [5] B-mode polarization spotted in CMB
    不详
    PHYSICS WORLD, 2013, 26 (09) : 4 - 4
  • [6] Preinflationary genesis with CMB B-mode polarization
    Liu, Zhi-Guo
    Li, Hong
    Piao, Yun-Song
    PHYSICAL REVIEW D, 2014, 90 (08):
  • [7] LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection
    Hazumi, M.
    Ade, P. A. R.
    Akiba, Y.
    Alonso, D.
    Arnold, K.
    Aumont, J.
    Baccigalupi, C.
    Barron, D.
    Basak, S.
    Beckman, S.
    Borrill, J.
    Boulanger, F.
    Bucher, M.
    Calabrese, E.
    Chinone, Y.
    Cho, S.
    Cukierman, A.
    Curtis, D. W.
    de Haan, T.
    Dobbs, M.
    Dominjon, A.
    Dotani, T.
    Duband, L.
    Ducout, A.
    Dunkley, J.
    Duval, J. M.
    Elleflot, T.
    Eriksen, H. K.
    Errard, J.
    Fischer, J.
    Fujino, T.
    Funaki, T.
    Fuskeland, U.
    Ganga, K.
    Goeckner-Wald, N.
    Grain, J.
    Halverson, N. W.
    Hamada, T.
    Hasebe, T.
    Hasegawa, M.
    Hattori, K.
    Hattori, M.
    Hayes, L.
    Hidehira, N.
    Hill, C. A.
    Hilton, G.
    Hubmayr, J.
    Ichiki, K.
    Iida, T.
    Imada, H.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2019, 194 (5-6) : 443 - 452
  • [8] Establishing the origin of CMB B-mode polarization
    Sheere, Connor
    van Engelen, Alexander
    Meerburg, P. Daniel
    Meyers, Joel
    PHYSICAL REVIEW D, 2017, 96 (06)
  • [9] Birefringence, CMB polarization, and magnetized B-mode
    Giovannini, Massimo
    Kunze, Kerstin E.
    PHYSICAL REVIEW D, 2009, 79 (08):
  • [10] LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection
    M. Hazumi
    P. A. R. Ade
    Y. Akiba
    D. Alonso
    K. Arnold
    J. Aumont
    C. Baccigalupi
    D. Barron
    S. Basak
    S. Beckman
    J. Borrill
    F. Boulanger
    M. Bucher
    E. Calabrese
    Y. Chinone
    S. Cho
    A. Cukierman
    D. W. Curtis
    T. de Haan
    M. Dobbs
    A. Dominjon
    T. Dotani
    L. Duband
    A. Ducout
    J. Dunkley
    J. M. Duval
    T. Elleflot
    H. K. Eriksen
    J. Errard
    J. Fischer
    T. Fujino
    T. Funaki
    U. Fuskeland
    K. Ganga
    N. Goeckner-Wald
    J. Grain
    N. W. Halverson
    T. Hamada
    T. Hasebe
    M. Hasegawa
    K. Hattori
    M. Hattori
    L. Hayes
    N. Hidehira
    C. A. Hill
    G. Hilton
    J. Hubmayr
    K. Ichiki
    T. Iida
    H. Imada
    Journal of Low Temperature Physics, 2019, 194 : 443 - 452