PROV-TE: A Provenance-Driven Diagnostic Framework for Task Eviction in Data Centers

被引:4
|
作者
Albatli, Abdulaziz [1 ,2 ]
McKee, David [1 ]
Townend, Paul [1 ]
Lau, Lydia [1 ]
Xu, Jie [1 ]
机构
[1] Univ Leeds, Sch Comp, Distributed Syst & Serv Res Grp, Leeds, W Yorkshire, England
[2] Shaqra Univ, Comp Sci Dept, Huraymila Coll Sci & Humanities, Riyadh, Saudi Arabia
关键词
Big Data; Data Centers; Cyberinfrastructure; Cloud Computing; Overcommitment; Overload; Provenance; PROV; Simulation; Distributed Systems;
D O I
10.1109/BigDataService.2017.34
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud Computing allows users to control substantial computing power for complex data processing, generating huge and complex data. However, the virtual resources requested by users are rarely utilized to their full capacities. To mitigate this, providers often perform over-commitment to maximize profit, which can result in node overloading and consequent task eviction. This paper presents a novel framework that mines the huge and growing historical usage data generated by Cloud data centers to identify the causes of overloads. Provenance modelling is applied to add contextual meaning to the data, and the PROV-TE diagnostic framework provides algorithms to efficiently identify the causality of task eviction. Using simulation to reflect real world scenarios, our results demonstrate a precision and recall of the diagnostic algorithms of 83% and 90% respectively. This demonstrates a high level of accuracy of the identification of causes.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 16 条
  • [1] ForensiBlock: A Provenance-Driven Blockchain Framework for Data Forensics and Auditability
    Akbarfam, Asma Jodeiri
    Heidaripour, Mahdieh
    Maleki, Hoda
    Dorai, Gokila
    Agrawal, Gagan
    2023 5TH IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS, TPS-ISA, 2023, : 136 - 145
  • [2] Provenance-driven Representation of Crowdsourcing Data for Efficient Data Analysis
    Martinez-Ortiz, Carlos
    Aroyo, Lora
    Inel, Oana
    Champilomatis, Stavros
    Dumitrache, Anca
    Timmermans, Benjamin
    2015 IEEE 11TH INTERNATIONAL CONFERENCE ON E-SCIENCE, 2015, : 300 - 303
  • [3] FAIR data pipeline: provenance-driven data management for traceable scientific workflows
    Mitchell, Sonia Natalie
    Lahiff, Andrew
    Cummings, Nathan
    Hollocombe, Jonathan
    Boskamp, Bram
    Field, Ryan
    Reddyhoff, Dennis
    Zarebski, Kristian
    Wilson, Antony
    Viola, Bruno
    Burke, Martin
    Archibald, Blair
    Bessell, Paul
    Blackwell, Richard
    Boden, Lisa A. A.
    Brett, Alys
    Brett, Sam
    Dundas, Ruth
    Enright, Jessica
    Gonzalez-Beltran, Alejandra N. N.
    Harris, Claire
    Hinder, Ian
    Hughes, Christopher David
    Knight, Martin
    Mano, Vino
    McMonagle, Ciaran
    Mellor, Dominic
    Mohr, Sibylle
    Marion, Glenn
    Matthews, Louise
    McKendrick, Iain J. J.
    Pooley, Christopher Mark
    Porphyre, Thibaud
    Reeves, Aaron
    Townsend, Edward
    Turner, Robert
    Walton, Jeremy
    Reeve, Richard
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2233):
  • [4] PROV-IO+: A Cross-Platform Provenance Framework for Scientific Data on HPC Systems
    Han, Runzhou
    Zheng, Mai
    Byna, Suren
    Tang, Houjun
    Dong, Bin
    Dai, Dong
    Chen, Yong
    Kim, Dongkyun
    Hassoun, Joseph
    Thorsley, David
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (05) : 844 - 861
  • [5] PROV-IO: An I/O-Centric Provenance Framework for Scientific Data on HPC Systems
    Han, Runzhou
    Byna, Suren
    Tang, Houjun
    Dong, Bin
    Zheng, Mai
    PROCEEDINGS OF THE 31ST INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, HPDC 2022, 2022, : 213 - 226
  • [6] Model-Driven Policy Framework for Data Centers
    Caba, Cosmin
    Mimidis, Angelos
    Soler, Jose
    2016 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD NETWORKING (IEEE CLOUDNET), 2016, : 126 - 129
  • [7] ADARM: An Application-Driven Adaptive Resource Management Framework for Data Centers
    Luo, Min
    Li, Li
    Chou, Wu
    2017 IEEE 6TH INTERNATIONAL CONFERENCE ON AI & MOBILE SERVICES (AIMS), 2017, : 76 - 84
  • [8] A Metaheuristic Framework for Dynamic Virtual Machine Allocation With Optimized Task Scheduling in Cloud Data Centers
    Alsadie, Deafallah
    IEEE ACCESS, 2021, 9 : 74218 - 74233
  • [9] A Data-Driven Diagnostic Framework for Wind Turbine Structures: A Holistic Approach
    Bogoevska, Simona
    Spiridonakos, Minas
    Chatzi, Eleni
    Dumova-Jovanoska, Elena
    Hoeffer, Rudiger
    SENSORS, 2017, 17 (04)
  • [10] Task-driven data fusion for additive manufacturing: Framework, approaches, and case studies
    Hu, Fu
    Liu, Ying
    Li, Yixin
    Ma, Shuai
    Qin, Jian
    Song, Jun
    Feng, Qixiang
    Sun, Xianfang
    Tang, Qian
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2023, 34