The Effect of Stress Relief on the Mechanical and Fatigue Properties of Additively Manufactured AlSi10Mg Parts

被引:53
|
作者
Mfusi, Busisiwe J. [1 ,2 ]
Mathe, Ntombizodwa R. [2 ]
Tshabalala, Lerato C. [2 ]
Popoola, Patricia A., I [1 ]
机构
[1] Tshwane Univ Technol, Dept Chem & Met Engn, Staatsartillerie Rd, ZA-0183 Pretoria, South Africa
[2] CSIR, Natl Laser Ctr, Meiring Naude Rd, ZA-0185 Pretoria, South Africa
基金
新加坡国家研究基金会; 芬兰科学院;
关键词
selective laser melting (SLM); Alsi10Mg; stress relieve; additive manufacturing; HEAT-TREATMENT; LASER; FRACTURE; MICROSTRUCTURE; ALLOY; STRENGTH; PREDICTION;
D O I
10.3390/met9111216
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The heating and cooling profiles experienced during laser additive manufacturing results in residual stresses build up in the component. Therefore, it is necessary to perform post build stress relieving towards the retention and improvement of the mechanical properties. However the thermal treatments for conventional manufacturing do not seem to completely accommodate these rapid heating and cooling cycles of laser processing techniques such as powder bed fusion. Characterizations such as density measurements on the samples were performed employing the Archimedes principle; hardness testing was performed on the Zwick micro/macro (Hv) hardness tester, SEM and Electron backscatter diffraction (EBSD). Fracture toughness and crack growth was conducted on a fatigue crack machine. All characterization was done after stress relieving of Selective Laser Melting (SLM) produced samples at 300 degrees C for 2 hrs was performed in a furnace. The mechanical properties appear to be rather compromised instead of being enhanced desirably. As-built SLM produced tensile specimens built in different directions exhibited significantly favorable mechanical properties. However, post stress relieve thermal treatment technique deteriorated the strength while increasing the ductility significantly. Nonetheless, fatigue crack growth and fracture toughness illustrated positive outcome in terms of fatigue life on SLM produced AlSi10Mg components in application.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The effect of extrusion and aging on the mechanical properties of additively manufactured AlSi10Mg
    Ben-Artzy, A.
    Hadad, G.
    Bussiba, A.
    Nahmany, M.
    PROGRESS IN ADDITIVE MANUFACTURING, 2022, 7 (02) : 201 - 212
  • [2] The effect of extrusion and aging on the mechanical properties of additively manufactured AlSi10Mg
    A. Ben-Artzy
    G. Hadad
    A. Bussiba
    M. Nahmany
    Progress in Additive Manufacturing, 2022, 7 : 201 - 212
  • [3] Microstructural and mechanical properties of AlSi10Mg: Hybrid welding of additively manufactured and cast parts
    M. Krochmal
    A. Nammalvar Raja Rajan
    G. Moeini
    S. V. Sajadifar
    T. Wegener
    T. Niendorf
    Journal of Materials Research, 2023, 38 : 297 - 311
  • [4] Microstructural and mechanical properties of AlSi10Mg: Hybrid welding of additively manufactured and cast parts
    Krochmal, M.
    Rajan, A. Nammalvar Raja
    Moeini, G.
    Sajadifar, S. V.
    Wegener, T.
    Niendorf, T.
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (02) : 297 - 311
  • [5] Microstructure and mechanical properties of an additively manufactured AlSi10Mg based alloy
    Atar, Bugrahan
    Uyuklu, Eren
    Yayla, Pasa
    MATERIALS TESTING, 2023, 65 (06) : 874 - 885
  • [6] An equivalent stress approach for predicting fatigue behavior of additively manufactured AlSi10Mg
    Strauss, Lea
    Duarte, Larissa
    Kruse, Julius
    Madia, Mauro
    Loewisch, Guenther
    PROGRESS IN ADDITIVE MANUFACTURING, 2025,
  • [7] The effect of texture on the anisotropy of thermophysical properties of additively manufactured AlSi10Mg
    Strumza, Einat
    Yeheskel, Ori
    Hayun, Shmuel
    ADDITIVE MANUFACTURING, 2019, 29
  • [8] Aging temperature effects on microstructure and mechanical properties for additively manufactured AlSi10Mg
    Liang, Yaru
    Ma, Tiejun
    Jin, Tounan
    Zhang, Bo
    Yang, Le
    Yin, Wenhang
    Fu, Hanguang
    MATERIALS SCIENCE AND TECHNOLOGY, 2023, 39 (10) : 1223 - 1236
  • [9] The Role of the Heterogenous Structure on the Mechanical Properties of Additively Manufactured AlSi10Mg Alloys
    Chen, Haoxiu
    Patel, Sagar
    Vlasea, Mihaela
    Zou, Yu
    TMS 2022 151ST ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2022, : 1577 - 1584
  • [10] Metallurgical investigations of laser remelted additively manufactured AlSi10Mg parts
    Schanz, J.
    Hofele, M.
    Ruck, S.
    Schubert, T.
    Hitzler, L.
    Schneider, G.
    Merkel, M.
    Riegel, H.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2017, 48 (05) : 463 - 476