A Bayesian spatio-temporal model to analyzing the stability of patterns of population distribution in an urban space using mobile phone data

被引:19
|
作者
Wang, Zhensheng [1 ,2 ,3 ,4 ,5 ,6 ]
Yue, Yang [3 ,4 ,5 ,6 ]
He, Biao [3 ,4 ,5 ,6 ,7 ]
Nie, Ke [2 ]
Tu, Wei [3 ,4 ,5 ,6 ]
Du, Qingyun [8 ]
Li, Qingquan [1 ,3 ,4 ,5 ,6 ]
机构
[1] Shenzhen Univ, Guangdong Prov Lab Artificial Intelligence & Digi, Shenzhen, Peoples R China
[2] Minist Nat Resources, Key Lab Urban Land Resources Monitoring & Simulat, Shenzhen, Peoples R China
[3] Shenzhen Univ, Guangdong Key Lab Urban Informat, Shenzhen, Peoples R China
[4] Shenzhen Univ, Shenzhen Key Lab Spatial Smart Sensing & Serv, Shenzhen, Peoples R China
[5] Shenzhen Univ, MNR Key Lab Geoenvironm Monitoring Great Bay Area, Shenzhen, Peoples R China
[6] Shenzhen Univ, Res Inst Smart Cities, Shenzhen, Peoples R China
[7] Shenzhen Univ, MNR, Technol Innovat Ctr Terr & Spatial Big Data, Shenzhen, Peoples R China
[8] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian hierarchical models; population fluctuation; space-time interactions; spatial autocorrelation; mobile phone data; TIME VARIATION; LOCATION DATA; DISEASE; BEHAVIOR; HARBIN; RISK;
D O I
10.1080/13658816.2020.1798967
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Understanding population distribution has excellent applications for planning and provision of municipal services. This study aims to explore the space-time structure of population distribution with area-level mobile phone data. We discuss a kind of Bayesian hierarchical models, fitted by Markov chain Monte Carlo simulation, that combines the overall spatial pattern and temporal trends as well as the departures from these stable components. We carry out an empirical study in Shenzhen, China, using the area-level mobile phone users in 24 hours. The results indicate that the estimation of the overall spatial pattern is not deteriorated when using a sophisticated spatio-temporal model. The temporal trend exhibits a reasonable fluctuation during the study period. Then we apply two rules to detect areas showing unstable trends of population fluctuation based on the posterior probabilities of the space-time interactions. We also include the population statistics and indices for mixed-use to explore the spatial pattern of population fluctuation. Our findings confirm that the Bayesian spatio-temporal model can enhance the understanding of the space-time variability of population distribution using mobile phone data. Further research should examine the spatial nonstationary effects of explanatory factors on mobile phone-based population fluctuation.
引用
收藏
页码:116 / 134
页数:19
相关论文
共 50 条
  • [1] Population distribution modelling at fine spatio-temporal scale based on mobile phone data
    Kubicek, Petr
    Konecny, Milan
    Stachon, Zdenek
    Shen, Jie
    Herman, Lukas
    Reznik, Tomas
    Stanek, Karel
    Stampach, Radim
    Leitgeb, Simon
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2019, 12 (11) : 1319 - 1340
  • [2] Spatio-Temporal Routine Mining on Mobile Phone Data
    Qin, Tian
    Shangguan, Wufan
    Song, Guojie
    Tang, Jie
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2018, 12 (05)
  • [3] Spatio-Temporal Analysis of Mobile Phone Data for Interaction Recognition
    Ghahramani, Mohammadhossein
    Zhou, MengChu
    Hon, Chi Tin
    2018 IEEE 15TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC), 2018,
  • [4] Estimating activity patterns using spatio-temporal data of cell phone networks
    Zahedi, Seyedmostafa
    Shafahi, Yousef
    INTERNATIONAL JOURNAL OF URBAN SCIENCES, 2018, 22 (02) : 162 - 179
  • [5] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [6] Urban crime prediction based on spatio-temporal Bayesian model
    Hu, Tao
    Zhu, Xinyan
    Duan, Lian
    Guo, Wei
    PLOS ONE, 2018, 13 (10):
  • [7] Research progress on spatio-temporal distribution estimation of urban population
    Wu H.
    Hu Q.
    Li R.
    Liu Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (09): : 1827 - 1847
  • [8] Spatio-temporal Prediction of Air Quality Using Spatio-temporal Clustering and Hierarchical Bayesian Model
    Wang, Feiyun
    Hu, Yao
    Qin, Yutao
    CHIANG MAI JOURNAL OF SCIENCE, 2024, 51 (05):
  • [9] Gender Gaps in the Use of Urban Space in Seoul: Analyzing Spatial Patterns of Temporary Populations Using Mobile Phone Data
    Jo, Areum
    Lee, Sang-Kyeong
    Kim, Jaecheol
    SUSTAINABILITY, 2020, 12 (16)
  • [10] Identifying Human Spatio-Temporal Activity Patterns from Mobile-Phone Traces
    Di Lorenzo, Giusy
    Calabrese, Francesco
    2011 14TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2011, : 1069 - 1074