SPIKE LAYER SOLUTIONS FOR A SINGULARLY PERTURBED NEUMANN PROBLEM: VARIATIONAL CONSTRUCTION WITHOUT A NONDEGENERACY

被引:0
|
作者
Byeon, Jaeyoung [1 ]
Moon, Sang-Hyuck [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Singular perturbation; Neumann condition; spike layer; mean curvature; transplantation flow; gradient flow; variational; LEAST-ENERGY SOLUTIONS; NONLINEAR SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; MULTIPEAK SOLUTIONS; ELLIPTIC PROBLEMS; STANDING WAVES; PEAK SOLUTIONS; BERESTYCKI; UNIQUENESS; EXISTENCE;
D O I
10.3934/cpaa.2019089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following singularly perturbed problem epsilon(2)Delta u - u + f(u) = 0, u > 0 in Omega, partial derivative u/partial derivative v = 0 on partial derivative Omega. Existence of a solution with a spike layer near a min-max critical point of the mean curvature on the boundary partial derivative Omega is well known when a nondegeneracy for a limiting problem holds. In this paper, we use a variational method for the construction of such a solution which does not depend on the nondengeneracy for the limiting problem. By a purely variational approach, we construct the solution for an optimal class of nonlinearities f satisfying the Berestycki-Lions conditions.
引用
收藏
页码:1921 / 1965
页数:45
相关论文
共 50 条