Sequential Monte Carlo methods for navigation systems

被引:0
|
作者
Sotak, Milos [1 ]
机构
[1] Armed Forces Acad, Dept Elect, Liptovsky 03106 6, Mikulas, Slovakia
来源
PRZEGLAD ELEKTROTECHNICZNY | 2011年 / 87卷 / 06期
关键词
INS; GPS; navigation systems; particle filter; SENSORS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper deals with new approach to navigation information processing using Sequential Monte Carlo Methods known as particle filtering. Although, the Sequential Monte Carlo Methods require huge amount of computing, these methods are more efficient than Kalman filters especially when the system is nonlinear or if probability density function of the errors is non-Gaussian. The paper presents integration of Inertial Navigation System (INS) and Global Positioning System (GPS) using Sequential Monte Carlo Methods for navigation information processing. Navigation systems were created in simulation environment. An original asset of the work consists in creation of models in the simulation environment to confirm the algorithms.
引用
收藏
页码:249 / 252
页数:4
相关论文
共 50 条
  • [1] Sequential Monte Carlo methods for dynamic systems
    Liu, JS
    Chen, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) : 1032 - 1044
  • [2] Sequential Monte Carlo filtering techniques applied to integrated navigation systems
    Nordlund, PJ
    Gustafsson, F
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 4375 - 4380
  • [3] New sequential Monte Carlo methods for nonlinear dynamic systems
    Guo, D
    Wang, XD
    Chen, R
    STATISTICS AND COMPUTING, 2005, 15 (02) : 135 - 147
  • [4] New sequential Monte Carlo methods for nonlinear dynamic systems
    Dong Guo
    Xiaodong Wang
    Rong Chen
    Statistics and Computing, 2005, 15 : 135 - 147
  • [5] Nested Sequential Monte Carlo Methods
    Naesseth, Christian A.
    Lindsten, Fredrik
    Schon, Thomas B.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1292 - 1301
  • [6] Sequential Monte Carlo methods for diffusion processes
    Jasra, Ajay
    Doucet, Arnaud
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2112): : 3709 - 3727
  • [7] Properties of marginal sequential Monte Carlo methods
    Crucinio, Francesca R.
    Johansen, Adam M.
    STATISTICS & PROBABILITY LETTERS, 2023, 203
  • [8] ON THE CONVERGENCE OF ADAPTIVE SEQUENTIAL MONTE CARLO METHODS
    Beskos, Alexandros
    Jasra, Ajay
    Kantas, Nikolas
    Thiery, Alexandre
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (02): : 1111 - 1146
  • [9] Sequential Monte Carlo Methods for Option Pricing
    Jasra, Ajay
    Del Moral, Pierre
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2011, 29 (02) : 292 - 316
  • [10] Sequential Monte Carlo Methods for System Identification
    Schon, Thomas B.
    Lindsten, Fredrik
    Dahlin, Johan
    Wagberg, Johan
    Naesseth, Christian A.
    Svensson, Andreas
    Dai, Liang
    IFAC PAPERSONLINE, 2015, 48 (28): : 775 - 786