The linearity of the master stability function

被引:3
|
作者
Ramadoss, Janarthanan [1 ]
Rajagopal, Karthikeyan [2 ,3 ,4 ]
Natiq, Hayder [5 ]
Hussain, Iqtadar [6 ]
机构
[1] Chennai Inst Technol, Ctr Artificial Intelligence, Chennai, Tamil Nadu, India
[2] Chennai Inst Technol, Ctr Nonlinear Syst, Chennai, Tamil Nadu, India
[3] Chandigarh Univ, Dept Elect & Commun Engn, Mohali 140413, Punjab, India
[4] Chandigarh Univ, Univ Ctr Res & Dev, Mohali 140413, Punjab, India
[5] Imam Jaafar Al Sadiq Univ, Informat Technol Coll, Baghdad 10001, Iraq
[6] Qatar Univ, Dept Math Stat & Phys, Doha 2713, Qatar
关键词
SYNCHRONIZATION; NETWORKS; NEURONS; MODEL;
D O I
10.1209/0295-5075/ac4199
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The master stability function (MSF) is a tool to evaluate the local stability of the synchronization in coupled oscillators. Computing the MSF of a network of a specific oscillator results in a curve whose shape is dependent on the nodes' dynamics, network topology, coupling function, and coupling strength. This paper calculates the MSF of networks of two diffusively coupled oscillators by considering different single variable and multi-variable couplings. Then, the linearity of the MSF is investigated by fitting a straight line to the MSF curve, and the root mean square error is obtained. It is observed that the multi-variable coupling with equal coefficients on all variables results in a linear MSF regardless of the dynamics of the nodes. Copyright (C) 2022 EPLA
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A fast technique for calculating master stability function
    Panahi, Shirin
    Jafari, Sajad
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (05):
  • [2] A master stability function approach to cardiac alternans
    Lai, Yi Ming
    Veasy, Joshua
    Coombes, Stephen
    Thul, Rudiger
    APPLIED NETWORK SCIENCE, 2019, 4 (01)
  • [3] A master stability function approach to cardiac alternans
    Yi Ming Lai
    Joshua Veasy
    Stephen Coombes
    Rüdiger Thul
    Applied Network Science, 4
  • [4] A master stability function for stochastically coupled chaotic maps
    Porfiri, M.
    EPL, 2011, 96 (04)
  • [5] Master stability function for piecewise smooth Filippov networks?
    Dieci, Luca
    Elia, Cinzia
    AUTOMATICA, 2023, 152
  • [6] Stochastic master stability function for noisy complex networks
    Della Rossa, Fabio
    DeLellis, Pietro
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [7] Linearity of stability conditions
    Igusa, Kiyoshi
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) : 1671 - 1696
  • [8] Synchronizability of Discrete Nonlinear Systems: A Master Stability Function Approach
    Ramasamy, Mohanasubha
    Kumarasamy, Suresh
    Sampathkumar, Sakthi Kumar
    Karthikeyan, Anitha
    Rajagopal, Karthikeyan
    COMPLEXITY, 2023, 2023
  • [9] Analysis of parameter mismatches in the master stability function for network synchronization
    Sorrentino, F.
    Porfiri, M.
    EPL, 2011, 93 (05)
  • [10] Investigating stability and linearity of a German M1 money demand function
    Lütkepohl, H
    Teräsvirta, T
    Wolters, J
    JOURNAL OF APPLIED ECONOMETRICS, 1999, 14 (05) : 511 - 525