Machine learning-based run-to-run control of a spatial thermal atomic layer etching reactor

被引:11
|
作者
Tom, Matthew [1 ]
Yun, Sungil [1 ]
Wang, Henrik [1 ]
Ou, Feiyang [1 ]
Orkoulas, Gerassimos [3 ]
Christofides, Panagiotis D. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[3] Widener Univ, Dept Chem Engn, Chester, PA 19013 USA
基金
美国国家科学基金会;
关键词
Semiconductor manufacturing; Spatial thermal atomic layer etching; Run-to-run control; Machine learning; Multiscale modeling; Computational fluid dynamics modeling; Kinetic Monte-Carlo simulation; KINETIC MONTE-CARLO; OPTIMAL OPERATION; ALUMINUM-OXIDE; DEPOSITION; ELECTRONICS; GROWTH;
D O I
10.1016/j.compchemeng.2022.108044
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In response to the next technological revolution, atomic layer processes have emerged to produce high -performing, thin-film semiconductor materials. To overcome the long purging times required for conventional atomic layer processes, spatial atomic layer processes have been recognized for their ability to reduce processing times; however, they lack characterization and control. This research aims to construct two novel run-to-run (R2R) control systems using a machine learning model with an artificial neural network (ANN) and an exponentially weighted moving average (EWMA) method for the spatial thermal atomic layer etching (SALE) of aluminum oxide thin films. The two R2R controllers are used in conjunction with a multiscale computational fluid dynamics model of a SALE process with various disturbances to test their effectiveness. Closed-loop simulation results demonstrate that the ANN-based R2R control system reduces etching per cycle variability, maintains the process output within a small region around the setpoint, and outperforms the traditional EWMA-based R2R control system in efficiency.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Integrating run-to-run control with feedback control for a spatial atomic layer etching reactor
    Wang, Henrik
    Tom, Matthew
    Ou, Feiyang
    Orkoulas, Gerassimos
    Christofides, Panagiotis D.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 203 : 1 - 10
  • [2] Integration of on-line machine learning-based endpoint control and run-to-run control for an atomic layer etching process
    Wang, Henrik
    Ou, Feiyang
    Suherman, Julius
    Orkoulas, Gerassimos
    Christofides, Panagiotis D.
    DIGITAL CHEMICAL ENGINEERING, 2025, 14
  • [3] Machine Learning Modeling and Run-to-Run Control of an Area-Selective Atomic Layer Deposition Spatial Reactor
    Tom, Matthew
    Wang, Henrik
    Ou, Feiyang
    Orkoulas, Gerassimos
    Christofides, Panagiotis D.
    COATINGS, 2024, 14 (01)
  • [4] Run-to-Run Control of Thermal Atomic Layer Deposition
    Zhang, Yichi
    Ding, Yangyao
    Wu, Zhe
    Christofides, Panagiotis D.
    2020 28TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2020, : 1080 - 1086
  • [5] Multivariable run-to-run control of thermal atomic layer etching of aluminum oxide thin films
    Yun, Sungil
    Tom, Matthew
    Ou, Feiyang
    Orkoulas, Gerassimos
    Christofides, Panagiotis D.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 182 : 1 - 12
  • [6] Multivariable run-to-run control of thermal atomic layer etching of aluminum oxide thin films
    Yun, Sungil
    Tom, Matthew
    Ou, Feiyang
    Orkoulas, Gerassimos
    Christofides, Panagiotis D.
    Chemical Engineering Research and Design, 2022, 182 : 1 - 12
  • [7] Integrating Feedback Control and Run-to-Run Control in Multi-Wafer Thermal Atomic Layer Deposition of Thin Films
    Zhang, Yichi
    Ding, Yangyao
    Christofides, Panagiotis D.
    PROCESSES, 2020, 8 (01)
  • [8] Combined real-time and run-to-run control of etch depth and spatial uniformity in plasma etching
    Hankinson, M
    Vincent, TL
    Irani, K
    Khargonekar, PP
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (07) : 2473 - 2479
  • [9] Survey on iterative learning control, repetitive control, and run-to-run control
    Wang, Youqing
    Gao, Furong
    Doyle, Francis J., III
    JOURNAL OF PROCESS CONTROL, 2009, 19 (10) : 1589 - 1600
  • [10] Adaptive run-to-run control and monitoring for a rapid thermal processor
    Qin, SJ
    Scheid, GW
    Riley, TJ
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (01): : 301 - 310