Saint-Venant torsion of a circular bar with a non-radial crack incorporating surface elasticity

被引:6
|
作者
Xu, Yang [1 ]
Wang, Xu [1 ]
机构
[1] E China Univ Sci & Technol, Sch Mech & Power Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
NUMERICAL-SOLUTION; INTERFACE CRACK; CYLINDER; CLARIFICATION; COMPOSITE;
D O I
10.1007/s00707-016-1617-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We analytically investigate the contribution of surface elasticity to the Saint-Venant torsion problem of a circular cylinder containing a non-radial crack. The surface elasticity for the crack faces is incorporated by using the continuum-based surface/interface model of Gurtin and Murdoch. Both internal and edge cracks are studied. By employing the Green's function method, we reduce the original boundary value problem to two coupled first-order Cauchy singular integro-differential equations which can be numerically solved by the Chebyshev polynomials and an adapted collocation method. The analysis indicates that in general the stresses at the crack tips exhibit both the weak logarithmic and the strong square root singularities. The jump in the warping function across the crack faces and the size-dependent torsional rigidity are calculated.
引用
收藏
页码:1903 / 1918
页数:16
相关论文
共 38 条
  • [1] Saint-Venant torsion of a circular bar with a non-radial crack incorporating surface elasticity
    Yang Xu
    Xu Wang
    Acta Mechanica, 2016, 227 : 1903 - 1918
  • [2] Saint-Venant torsion of a circular bar with a bridged radial crack incorporating surface elasticity
    Yang, Moxuan
    Wang, Xu
    ACTA MECHANICA, 2017, 228 (02) : 651 - 672
  • [3] Saint-Venant torsion of a circular bar with a bridged radial crack incorporating surface elasticity
    Moxuan Yang
    Xu Wang
    Acta Mechanica, 2017, 228 : 651 - 672
  • [4] Saint-Venant torsion of a circular bar with radial cracks incorporating surface elasticity
    Wang, Xu
    Xu, Yang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01): : 1 - 18
  • [5] Saint-Venant torsion of a circular bar with radial cracks incorporating arbitrarily varied surface elasticity
    Xu, Yang
    Wang, Xu
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2018, 25 (04) : 335 - 349
  • [6] Saint–Venant torsion of a circular bar with radial cracks incorporating surface elasticity
    Xu Wang
    Yang Xu
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [7] SAINT-VENANT TORSION OF A FUNCTIONALLY GRADED CIRCULAR BAR WITH A RADIAL SLIT
    Baksa, A.
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS-BULGARIA, 2020, 50 (01): : 83 - 101
  • [8] Saint-Venant torsion of cylindrical orthotropic bar
    István Ecsedi
    Attila Baksa
    Archive of Applied Mechanics, 2023, 93 : 2025 - 2032
  • [9] Saint-Venant torsion of cylindrical orthotropic bar
    Ecsedi, Istvan
    Baksa, Attila
    ARCHIVE OF APPLIED MECHANICS, 2023, 93 (05) : 2025 - 2032
  • [10] Saint-Venant torsion of orthotropic piezoelectric elliptical bar
    István Ecsedi
    Attila Baksa
    Acta Mechanica, 2022, 233 : 201 - 211