Global Well-posedness for the Defocusing, Quintic Nonlinear Schrodinger Equation in One Dimension for Low Regularity Data

被引:6
|
作者
Dodson, Benjamin G. [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
ROUGH SOLUTIONS; CAUCHY-PROBLEM; SCATTERING; EXISTENCE;
D O I
10.1093/imrn/rnr037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove global well-posedness of the one-dimensional quintic defocusing nonlinear Schrodinger initial value problem with low regularity initial data. We show that a unique global solution exists for u(0) is an element of H-s(R), s > 1/4. This improves the result in De Silva, Pavlovic, Staffilani, and Tzirakis [Global well-posedness and polynomial bounds for the defocusing L-2 -critical Schrodinger equation in R.], which proved global wellposedness for s > 1/3. The main new argument is that we obtain almost Morawetz estimates with an improved error.
引用
收藏
页码:870 / 893
页数:24
相关论文
共 50 条