Automatic identification of bird species based on sinusoidal modeling of syllables

被引:0
|
作者
Härmä, A [1 ]
机构
[1] Helsinki Univ Technol, Lab Acoust & Audio Signal Proc, FIN-02015 Espoo, Finland
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Syllables are elementary building blocks of bird song. In sounds of many songbirds a large class of syllables can be approximated as amplitude and frequency varying brief sinusoidal pulses. In this article we test how well bird species can be recognized by comparing simple sinusoidal representations of isolated syllables. Results are encouraging and show that with limited sets of bird species a recognizer based on this signal model may already be sufficient.
引用
收藏
页码:545 / 548
页数:4
相关论文
共 50 条
  • [1] Effects of landscape and distance in automatic audio based bird species identification
    Somervuo, Panu
    Lauha, Patrik
    Lokki, Tapio
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 154 (01): : 245 - 254
  • [2] Automatic Identification of Bird Species from Audio
    Carvalho, Silvestre
    Gomes, Elsa Ferreira
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 41 - 52
  • [3] Automatic segmentation of audio signal in bird species identification
    Zottesso, Rafael H. D.
    Matsushita, Gustavo H. G.
    Lucio, Diego Rafael
    Costa, Yandre M. G.
    PROCEEDINGS OF THE 2016 35TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2016,
  • [4] Visualization of Audio Records for Automatic Bird Species Identification
    Reyes, Angie K.
    Camargo, Jorge E.
    2015 20TH SYMPOSIUM ON SIGNAL PROCESSING, IMAGES AND COMPUTER VISION (STSIVA), 2015,
  • [5] Automatic Segmentation of Audio Signals for Bird Species Identification
    Evangelista, Thiago L. F.
    Priolli, Thales M.
    Silla, Carlos N., Jr.
    Angelico, Bruno A.
    Kaestner, Celso A. A.
    2014 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2014, : 223 - 228
  • [6] Feature Set Comparison for Automatic Bird Species Identification
    Lopes, Marcelo Teider
    Koerich, Alessandro Lameiras
    Silla Junior, Carlos Nascimento
    Alves Kaestner, Celso Antonio
    2011 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2011, : 965 - 970
  • [7] Deep Learning-based Automatic Bird Species Identification from Isolated Recordings
    Noumida, A.
    Rajan, Rajeev
    2021 8TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS (ICSCC), 2021, : 252 - 256
  • [8] PakhiChini: Automatic Bird Species Identification Using Deep Learning
    Ragib, Kazi Md
    Shithi, Raisa Taraman
    Haq, Shihab Ali
    Hasan, Md
    Sakib, Kazi Mohammed
    Farah, Tanjila
    PROCEEDINGS OF THE 2020 FOURTH WORLD CONFERENCE ON SMART TRENDS IN SYSTEMS, SECURITY AND SUSTAINABILITY (WORLDS4 2020), 2020, : 1 - 6
  • [9] Automatic Syllables Segmentation for Frog Identification System
    Jaafar, Haryati
    Ramli, Dzati Athiar
    2013 IEEE 9TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS (CSPA), 2013, : 224 - 228
  • [10] Automatic bird species recognition based on birds vocalization
    Stastny, Jiri
    Munk, Michal
    Juranek, Lubos
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2018,