Revisiting the numerical stability/accuracy conditions of explicit PIC/MCC simulations of low-temperature gas discharges

被引:17
|
作者
Vass, M. [1 ,2 ]
Palla, P. [3 ,4 ]
Hartmann, P. [2 ]
机构
[1] Ruhr Univ Bochum, Dept Elect Engn & Informat Sci, D-44780 Bochum, Germany
[2] Wigner Res Ctr Phys, Inst Solid State Phys & Opt, Konkoly Thege Miklos Str 29-33, H-1121 Budapest, Hungary
[3] Eotvos Lorand Univ, Fac Sci, Pazmany Peter Setany 1-A, H-1117 Budapest, Hungary
[4] Robert Bosch Kft, Gyomroi Ut 104, H-1103 Budapest, Hungary
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2022年 / 31卷 / 06期
关键词
particle-in-cell; Monte Carlo collisions; PIC; MCC; numerical stability; numerical accuracy; PARTICLE MANAGEMENT; PLASMA SIMULATIONS; RF DISCHARGE; VALIDATION; ARGON; ION;
D O I
10.1088/1361-6595/ac6e85
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Particle-in-cell (PIC) with Monte Carlo collisions is a fully kinetic, particle based numerical simulation method with increasing popularity in the field of low temperature gas discharge physics. Already in its simplest form (electrostatic, one-dimensional geometry, and explicit time integration), it can properly describe a wide variety of complex, non-local, non-linear phenomena in electrical gas discharges at the microscopic level with high accuracy. However, being a numerical model working with discretized temporal and (partially) spatial coordinates, its stable and accurate operation largely depends on the choice of several model parameters. Starting from four selected base cases of capacitively coupled, radio frequency driven argon discharges, representing low and intermediate pressure and voltage situations, we discuss the effect of the variation of a set of simulation parameters on the plasma density distribution and the electron energy probability function. The simulation parameters include the temporal and spatial resolution, the PIC superparticle weight factor, as well as the electron reflection and the ion-induced electron emission coefficients, characterizing plasma-surface interactions.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Advanced fluid modeling and PIC/MCC simulations of low-pressure ccrf discharges
    Becker, M. M.
    Kaehlert, H.
    Sun, A.
    Bonitz, M.
    Loffhagen, D.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (04):
  • [2] Similarity laws of low pressure inductively coupled discharges based on PIC/MCC simulations
    Wen, Hui
    Schulze, Julian
    Fu, Yangyang
    Sun, Jing-Yu
    Zhang, Quan-Zhi
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2025, 34 (03):
  • [3] Numerical thermalization in 2D PIC simulations: Practical estimates for low-temperature plasma simulations
    Jubin, Sierra
    Powis, Andrew Tasman
    Villafana, Willca
    Sydorenko, Dmytro
    Rauf, Shahid
    Khrabrov, Alexander V.
    Sarwar, Salman
    Kaganovich, Igor D.
    PHYSICS OF PLASMAS, 2024, 31 (02)
  • [4] Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations
    Rafatov, Ismail
    Arda, Ibrahim
    TURKISH JOURNAL OF PHYSICS, 2023, 47 (04): : 198 - 213
  • [5] Stability of the low-temperature states of high-pressure microwave discharges
    A. V. Zvonkov
    A. V. Timofeev
    P. Handel
    Plasma Physics Reports, 2000, 26 : 801 - 808
  • [6] Stability of the low-temperature states of high-pressure microwave discharges
    Zvonkov, AV
    Timofeev, AV
    Handel, P
    PLASMA PHYSICS REPORTS, 2000, 26 (09) : 801 - 808
  • [7] Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects
    Kim, HC
    Iza, F
    Yang, SS
    Radmilovic-Radjenovic, M
    Lee, JK
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (19) : R283 - R301
  • [8] Detailed numerical simulations of low-temperature oxidation of NOx by ozone
    Rovira, Marc
    Engvall, Klas
    Duwig, Christophe
    FUEL, 2021, 303
  • [9] Low-temperature separation of gas: Simulation of dynamic conditions
    Dolganova, Irena O.
    Dolganov, Igor M.
    Ivashkina, Elena N.
    Vladescu, Alina
    PETROLEUM SCIENCE AND TECHNOLOGY, 2017, 35 (12) : 1263 - 1269
  • [10] Numerical simulations of ion and electron transport in a low-temperature dusty plasma
    Yu. V. Petrushevich
    Plasma Physics Reports, 2003, 29 : 473 - 479