Inelastic Scattering of Photon Pairs in Qubit Arrays with Subradiant States

被引:65
|
作者
Ke, Yongguan [1 ,2 ,3 ]
Poshakinskiy, Alexander, V [4 ]
Lee, Chaohong [1 ,2 ,5 ]
Kivshar, Yuri S. [3 ,6 ]
Poddubny, Alexander N. [3 ,4 ,6 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Key Lab Quantum Metrol & Sensing, Zhuhai Campus, Zhuhai 519082, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
[3] Australian Natl Univ, Nonlinear Phys Ctr, Res Sch Phys, Canberra, ACT 2601, Australia
[4] Ioffe Inst, St Petersburg 194021, Russia
[5] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou Campus, Guangzhou 510275, Guangdong, Peoples R China
[6] ITMO Univ, St Petersburg 197101, Russia
基金
俄罗斯科学基金会; 澳大利亚研究理事会; 俄罗斯基础研究基金会; 中国国家自然科学基金;
关键词
QUANTUM; POLARITONS; RADIATION; ATOMS;
D O I
10.1103/PhysRevLett.123.253601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a rigorous theoretical approach for analyzing inelastic scattering of photon pairs in arrays of two-level qubits embedded into a waveguide. Our analysis reveals a strong enhancement of the scattering when the energy of incoming photons resonates with the double-excited subradiant states. We identify the role of different double-excited states in the scattering, such as superradiant, subradiant, and twilight states, as a product of single-excitation bright and subradiant states. Importantly, the N-excitation subradiant states can be engineered only if the number of qubits exceeds 2N. Both the subradiant and twilight states can generate long-lived photon-photon correlations, paving the way to storage and processing of quantum information.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Superradiant and Subradiant Cavity Scattering by Atom Arrays
    Yan, Zhenjie
    Ho, Jacquelyn
    Lu, Yue-Hui
    Masson, Stuart J.
    Asenjo-Garcia, Ana
    Stamper-Kurn, Dan M.
    PHYSICAL REVIEW LETTERS, 2023, 131 (25)
  • [2] Subradiant Bell States in Distant Atomic Arrays
    Guimond, P. -O.
    Grankin, A.
    Vasilyev, D. V.
    Vermersch, B.
    Zoller, P.
    PHYSICAL REVIEW LETTERS, 2019, 122 (09)
  • [3] Strongly subradiant states in planar atomic arrays
    Volkov, Ilya A.
    Ustimenko, Nikita A.
    Kornovan, Danil F.
    Sheremet, Alexandra S.
    Savelev, Roman S.
    Petrov, Mihail I.
    NANOPHOTONICS, 2024, 13 (03) : 289 - 298
  • [4] Cooperative single-photon subradiant states
    Jen, H. H.
    Chang, M. -S.
    Chen, Y. -C.
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [5] Preparation of subradiant states using local qubit control in circuit QED
    Filipp, S.
    van Loo, A. F.
    Baur, M.
    Steffen, L.
    Wallraff, A.
    PHYSICAL REVIEW A, 2011, 84 (06):
  • [6] Edge states of photon pairs in cavity arrays with spatially modulated nonlinearity
    Lyubarov, Mark
    Poddubny, Alexander
    PHYSICAL REVIEW A, 2019, 100 (05)
  • [7] Optimal tracking for pairs of qubit states
    Mendonca, Paulo E. M. F.
    Gilchrist, Alexei
    Doherty, Andrew C.
    PHYSICAL REVIEW A, 2008, 78 (01):
  • [8] Inelastic scattering of quanta with production of pairs
    Plesset, MS
    Wheeler, JA
    PHYSICAL REVIEW, 1935, 48 (04): : 302 - 306
  • [9] Tunable bandwidth and nonlinearities in an atom-photon interface with subradiant states
    Shlesinger, Ilan
    Senellart, Pascale
    Lanco, Loic
    Greffet, Jean-Jacques
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [10] Controllable Switching between Superradiant and Subradiant States in a 10-qubit Superconducting Circuit
    Wang, Zhen
    Li, Hekang
    Feng, Wei
    Song, Xiaohui
    Song, Chao
    Liu, Wuxin
    Guo, Qiujiang
    Zhang, Xu
    Dong, Hang
    Zheng, Dongning
    Wang, H.
    Wang, Da-Wei
    PHYSICAL REVIEW LETTERS, 2020, 124 (01)