Estimation of plasma equilibrium parameters via a neural network approach

被引:3
|
作者
Zhu, Zi-Jian [1 ,2 ]
Guo, Yong [2 ]
Yang, Fei [3 ]
Xiao, Bing-Jia [1 ,2 ]
Li, Jian-Gang [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Engn & Appl Phys, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[3] Anhui Med Univ, Dept Med Informat Engn, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
neural network; fusion; plasma equilibrium; noise immunity; IDENTIFICATION;
D O I
10.1088/1674-1056/ab55d1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Plasma equilibrium parameters such as position, X-point, internal inductance, and poloidal beta are essential information for efficient and safe operation of tokamak. In this work, the artificial neural network is used to establish a non-linear relationship between the measured diagnostic signals and selected equilibrium parameters. The estimation process is split into a preliminary classification of the kind of equilibrium (limiter or divertor) and subsequent inference of the equilibrium parameters. The training and testing datasets are generated by the tokamak simulation code (TSC), which has been bench-marked with the EAST experimental data. The noise immunity of the inference model is tested. Adding noise to model inputs during training process is proved to have a certain ability for maintaining performance.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Estimation of plasma equilibrium parameters via a neural network approach
    朱子健
    郭勇
    杨飞
    肖炳甲
    李建刚
    Chinese Physics B, 2019, 28 (12) : 252 - 258
  • [2] FAST NONLINEAR EXTRACTION OF PLASMA EQUILIBRIUM PARAMETERS USING A NEURAL NETWORK MAPPING
    LISTER, JB
    SCHNURRENBERGER, H
    NUCLEAR FUSION, 1991, 31 (07) : 1291 - 1300
  • [3] Neural network approach for abnormal pattern parameters estimation of control charts
    Le, Qinghong
    Li, Jianwen
    An, Xiang
    Zhu, Mingquan
    Hangkong Zhizao Jishu/Aeronautical Manufacturing Technology, 2002, (04):
  • [4] NEURAL NETWORK FOR ESTIMATION OF PARAMETERS OF SINEWAVE
    OSOWSKI, S
    ELECTRONICS LETTERS, 1990, 26 (11) : 689 - 691
  • [5] NEURAL NETWORK FOR ESTIMATION OF PARAMETERS OF SINEWAVE
    KARRAS, DA
    VAROUFAKIS, SJ
    ELECTRONICS LETTERS, 1992, 28 (18) : 1750 - 1751
  • [6] Force parameters for on-line tool wear estimation: A neural network approach
    Das, S
    Chattopadhyay, AB
    Murthy, ASR
    NEURAL NETWORKS, 1996, 9 (09) : 1639 - 1645
  • [7] The Efficacy of Galaxy Shape Parameters in Photometric Redshift Estimation: A Neural Network Approach
    Singal, J.
    Shmakova, M.
    Gerke, B.
    Griffith, R. L.
    Lotz, J.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2011, 123 (903) : 615 - 621
  • [8] Estimation of video QoE from MAC parameters in wireless network: A Random Neural Network approach
    Paudel, Indira
    Pokhrel, Jeevan
    Wehbi, Bachar
    Cavalli, Ana
    Jouaber, Badii
    2014 14th International Symposium on Communications and Information Technologies (ISCIT), 2014, : 51 - 55
  • [9] Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach
    Hwang, Hyung Ju
    Jang, Jin Woo
    Jo, Hyeontae
    Lee, Jae Yong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 419
  • [10] NEURAL NETWORK FOR ESTIMATION OF PARAMETERS OF SINEWAVE - REPLY
    OSOWSKI, S
    ELECTRONICS LETTERS, 1992, 28 (18) : 1751 - 1751