Hardware for dynamic quantum computing

被引:58
|
作者
Ryan, Colm A. [1 ]
Johnson, Blake R. [1 ]
Riste, Diego [1 ]
Donovan, Brian [1 ]
Ohki, Thomas A. [1 ]
机构
[1] Raytheon BBN Technol, Cambridge, MA 02138 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2017年 / 88卷 / 10期
关键词
TELEPORTATION;
D O I
10.1063/1.5006525
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Hardware Shortcuts for Robust Quantum Computing
    Sarlette, Alain
    Rouchon, Pierre
    ERCIM NEWS, 2018, (112): : 30 - 31
  • [2] Eliminating the noise from quantum computing hardware
    Li, Keren
    Quantum Engineering, 2020, 2 (01)
  • [3] Materials challenges and opportunities for quantum computing hardware
    de Leon, Nathalie P.
    Itoh, Kohei M.
    Kim, Dohun
    Mehta, Karan K.
    Northup, Tracy E.
    Paik, Hanhee
    Palmer, B. S.
    Samarth, N.
    Sangtawesin, Sorawis
    Steuerman, D. W.
    SCIENCE, 2021, 372 (6539) : 253 - +
  • [4] An Energy Estimation Benchmark for Quantum Computing Hardware
    Woitzik, Andreas J. C.
    Hoffmann, Lukas
    Buchleitner, Andreas
    Carnio, Edoardo G.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2024, 31 (01):
  • [5] Dynamic thermalization on noisy quantum hardware
    Perrin, Hugo
    Scoquart, Thibault
    Pavlov, Andrei I.
    Gnezdilov, Nikolay V.
    COMMUNICATIONS PHYSICS, 2025, 8 (01):
  • [6] Quantum computing hardware in the cloud: Should a computational chemist care?
    Rossi, Alessandro
    Baity, Paul G.
    Schafer, Vera M.
    Weides, Martin
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (14)
  • [7] An FPGA-based hardware abstraction of quantum computing systems
    Khalid, Madiha
    Mujahid, Umar
    Jafri, Atif
    Choi, Hongsik
    Muhammad, Najam ul Islam
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (05) : 2001 - 2018
  • [8] A language and hardware independent approach to quantum-classical computing
    McCaskey, A. J.
    Dumitrescu, E. F.
    Liakh, D.
    Chen, M.
    Feng, W.
    Humble, T. S.
    SOFTWAREX, 2018, 7 : 245 - 254
  • [9] An FPGA-based hardware abstraction of quantum computing systems
    Madiha Khalid
    Umar Mujahid
    Atif Jafri
    Hongsik Choi
    Najam ul Islam Muhammad
    Journal of Computational Electronics, 2021, 20 : 2001 - 2018
  • [10] Trustworthy and reliable computing using untrusted and unreliable quantum hardware
    Upadhyay, Suryansh
    Ghosh, Swaroop
    FRONTIERS IN COMPUTER SCIENCE, 2024, 6