Tracing the solution surface with folds of a two-parameter system

被引:9
|
作者
Chang, SL
Chien, CS [1 ]
Jeng, BW
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
[2] So Taiwan Univ Technol, Ctr Gen Educ, Tainan 710, Taiwan
来源
关键词
parameter-dependent nonlinear systems; solution manifold; singularities; continuation methods; two-grid schemes;
D O I
10.1142/S0218127405013630
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a special Gauss-Newton method for tracing solution manifolds with singularities of multiparameter systems. First we choose one of the parameters as the continuation parameter., and fix the others. Then we trace one-dimensional solution curves by using continuation methods. Singularities such as folds, simple and multiple bifurcations on each solution curve can be easily detected. Next, we choose an interval for the second continuation parameter, and trace one-dimensional solution curves for certain values in this interval. This constitutes a two-dimensional solution surface. The procedure can be generalized to trace a k-dimensional solution manifold. Numerical results in 1D, 2D and 3D second-order semilinear elliptic eigenvalue problems, given by Lions [1982] are reported.
引用
收藏
页码:2689 / 2700
页数:12
相关论文
共 50 条
  • [1] Ridge regression in two-parameter solution
    Lipovetsky, S
    Conklin, WM
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (06) : 525 - 540
  • [2] Exact solution of a two-parameter extended Bariev model
    Zheng, Mingchen
    Zhang, Xin
    Cao, Junpeng
    Yang, Wen-Li
    Wang, Yupeng
    NUCLEAR PHYSICS B, 2024, 1006
  • [3] Numerical solution of some two-parameter eigenvalue problems
    Podlevskyi B.M.
    Journal of Mathematical Sciences, 2010, 165 (2) : 214 - 220
  • [4] Two-parameter GSOR method for the augmented system
    Li, Z
    Li, CJ
    Evans, DJ
    Zhang, T
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (08) : 1033 - 1042
  • [5] TWO-PARAMETER SYSTEM, NONLINEARLY DEPENDING ON PARAMETERS
    Salmanova, Gunay H.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2011, 34 (42): : 99 - 104
  • [6] Controlling chaos of two-parameter dynamical system
    Tong, Peiqing
    He, Jinyong
    Wuli Xuebao/Acta Physica Sinica, 1995, 44 (10): : 1551 - 1557
  • [7] Polymer solution viscoelasticity from two-parameter temporal scaling
    Phillies, GDJ
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (12): : 5989 - 5992
  • [8] Two-Parameter Pseudopotential
    Koptsev, A. P.
    Nyavro, A. V.
    Cherepanov, V. N.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2009, 36 (11) : 342 - 344
  • [9] Two-Parameter Semigroups
    Jimmie A. Lawson
    Desmond A. Robbie
    Semigroup Forum, 2006, 72 : 15 - 35
  • [10] Two-parameter semigroups
    Lawson, JA
    Robbie, DA
    SEMIGROUP FORUM, 2006, 72 (01) : 15 - 35