Global well-posedness for a nonlocal semilinear pseudo-parabolic equation with conical degeneration

被引:16
|
作者
Di, Huafei [1 ,2 ]
Shang, Yadong [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
关键词
Pseudo-parabolic equation; Nonlocal source; Conical degeneration; Blow-up and Decay; Potential well; Variational method; TIME BLOW-UP; THIN-FILM EQUATION; P-LAPLACE EQUATION; HYPERBOLIC-EQUATIONS; NON-EXTINCTION; INITIAL DATA; EXISTENCE; INSTABILITY;
D O I
10.1016/j.jde.2020.03.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with a class of nonlocal semilinear pseudo-parabolic equation with conical degeneration u(t) - Delta(B)u(t) - Delta(B)u = vertical bar u vertical bar(p-1) u-1/vertical bar B vertical bar integral(B) vertical bar u vertical bar(p-1)udx(1)/x(1)dx', on a manifold with conical singularity, where Delta(B) is Fuchsian type Laplace operator with totally characteristic degeneracy on the boundary x(1)= 0. By using the modified method of potential well with Galerkin approximation and concavity, the global existence, uniqueness, finite time blow up and asymptotic behavior of the solutions will be discussed at the low initial energy J(u(0)) < dand critical initial energy J(u(0)) = d, respectively. Furthermore, we investigate the global existence and finite time blow up of the solutions with the high initial energy J(u(0)) > d by the variational method. Especially, we also derive the threshold results of global existence and nonexistence for the solutions at two different initial energy levels, i.e. low initial leveland critical initial level. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:4566 / 4597
页数:32
相关论文
共 50 条
  • [1] The Well-Posedness of Solution to Semilinear Pseudo-parabolic Equation
    Wang, Wei-ke
    Wang, Yu-tong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (02): : 386 - 400
  • [2] The Well-Posedness of Solution to Semilinear Pseudo-parabolic Equation
    Wei-ke Wang
    Yu-tong Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 386 - 400
  • [3] The Well-Posedness of Solution to Semilinear Pseudo-parabolic Equation
    Wei-ke WANG
    Yu-tong WANG
    ActaMathematicaeApplicataeSinica, 2019, 35 (02) : 386 - 400
  • [4] Well-posedness of the solution of the fractional semilinear pseudo-parabolic equation
    Cheng, Jiazhuo
    Fang, Shaomei
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [5] Well-posedness of the solution of the fractional semilinear pseudo-parabolic equation
    Jiazhuo Cheng
    Shaomei Fang
    Boundary Value Problems, 2020
  • [6] On the well-posedness of a nonlinear pseudo-parabolic equation
    Nguyen Huy Tuan
    Vo Van Au
    Vo Viet Tri
    Donal O’Regan
    Journal of Fixed Point Theory and Applications, 2020, 22
  • [7] On the well-posedness of a nonlinear pseudo-parabolic equation
    Tuan, Nguyen Huy
    Au, Vo Van
    Tri, Vo Viet
    O'Regan, Donal
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (03)
  • [8] The local well-posedness of solutions for a nonlinear pseudo-parabolic equation
    Shaoyong Lai
    Haibo Yan
    Yang Wang
    Boundary Value Problems, 2014
  • [9] The local well-posedness of solutions for a nonlinear pseudo-parabolic equation
    Lai, Shaoyong
    Yan, Haibo
    Wang, Yang
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 8
  • [10] GLOBAL WELL-POSEDNESS FOR A FOURTH ORDER PSEUDO-PARABOLIC EQUATION WITH MEMORY AND SOURCE TERMS
    Di, Huafei
    Shang, Yadong
    Zheng, Xiaoxiao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (03): : 781 - 801