A General Proximal Alternating Minimization Method with Application to Nonconvex Nonsmooth 1D Total Variation Denoising

被引:0
|
作者
Zhang, Xiaoya [1 ]
Sun, Tao [1 ]
Cheng, Lizhi [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Computat, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
NOISE REMOVAL; REGULARIZATION; PROJECTION; ALGORITHM;
D O I
10.1155/2016/5053434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We deal with a class of problems whose objective functions are compositions of nonconvex nonsmooth functions, which has a wide range of applications in signal/image processing. We introduce a new auxiliary variable, and an efficient general proximal alternating minimization algorithm is proposed. This method solves a class of nonconvex nonsmooth problems through alternating minimization. We give a brilliant systematic analysis to guarantee the convergence of the algorithm. Simulation results and the comparison with two other existing algorithms for 1D total variation denoising validate the efficiency of the proposed approach. The algorithm does contribute to the analysis and applications of a wide class of nonconvex nonsmooth problems.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A Stochastic Proximal Alternating Minimization for Nonsmooth and Nonconvex
    Driggs, Derek
    Tang, Junqi
    Liang, Jingwei
    Davies, Mike
    Schonlieb, Carola-Bibiane
    SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (04): : 1932 - 1970
  • [2] Inertial proximal alternating minimization for nonconvex and nonsmooth problems
    Zhang, Yaxuan
    He, Songnian
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [3] Inertial proximal alternating minimization for nonconvex and nonsmooth problems
    Yaxuan Zhang
    Songnian He
    Journal of Inequalities and Applications, 2017
  • [4] Proximal alternating linearized minimization for nonconvex and nonsmooth problems
    Bolte, Jerome
    Sabach, Shoham
    Teboulle, Marc
    MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) : 459 - 494
  • [5] Proximal alternating linearized minimization for nonconvex and nonsmooth problems
    Jérôme Bolte
    Shoham Sabach
    Marc Teboulle
    Mathematical Programming, 2014, 146 : 459 - 494
  • [6] A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems
    Wang, Qingsong
    Han, Deren
    APPLIED NUMERICAL MATHEMATICS, 2023, 189 : 66 - 87
  • [7] Inertial Proximal Alternating Linearized Minimization (iPALM) for Nonconvex and Nonsmooth Problems
    Pock, Thomas
    Sabach, Shoham
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04): : 1756 - 1787
  • [8] A Proximal-Type Method for Nonsmooth and Nonconvex Constrained Minimization Problems
    Sempere, Gregorio M.
    de Oliveira, Welington
    Royset, Johannes O.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (03)
  • [9] A proximal alternating direction method of multipliers for a minimization problem with nonconvex constraints
    Zheng Peng
    Jianli Chen
    Wenxing Zhu
    Journal of Global Optimization, 2015, 62 : 711 - 728
  • [10] A PROXIMAL ALTERNATING DIRECTION METHOD OF MULTIPLIER FOR LINEARLY CONSTRAINED NONCONVEX MINIMIZATION
    Zhang, Jiawei
    Luo, Zhi-Quan
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (03) : 2272 - 2302