Efficiently Enumerating Minimal Triangulations

被引:7
|
作者
Carmeli, Nofar [1 ]
Kenig, Batya [1 ]
Kimelfeld, Benny [1 ]
机构
[1] Technion, Haifa, Israel
基金
美国国家科学基金会; 以色列科学基金会;
关键词
Minimal triangulation; Tree decomposition; Enumeration algorithm; Minimal separators; Maximal independent sets; Maximal cliques; FILL-IN; HYPERTREE DECOMPOSITIONS; GRAPH; ALGORITHMS; TREEWIDTH;
D O I
10.1145/3034786.3056109
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an algorithm that enumerates all the minimal triangulations of a graph in incremental polynomial time. Consequently, we get an algorithm for enumerating all the proper tree decompositions, in incremental polynomial time, where "proper" means that the tree decomposition cannot be improved by removing or splitting a bag. The algorithm can incorporate any method for (ordinary, single result) triangulation or tree decomposition, and can serve as an anytime algorithm to improve such a method. We describe an extensive experimental study of an implementation on real data from different fields. Our experiments show that the algorithm improves upon central quality measures over the underlying tree decompositions, and is able to produce a large number of high-quality decompositions.
引用
收藏
页码:273 / 287
页数:15
相关论文
共 50 条
  • [1] Efficiently enumerating minimal triangulations
    Carmeli, Nofar
    Kenig, Batya
    Kimelfeld, Benny
    Kroell, Markus
    DISCRETE APPLIED MATHEMATICS, 2021, 303 : 216 - 236
  • [2] Enumerating triangulations in general dimensions
    Imai, H
    Masada, T
    Takeuchi, F
    Imai, K
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2002, 12 (06) : 455 - 480
  • [3] Enumerating Triangulations by Parallel Diagonals
    Regev, Alon
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (08)
  • [4] Enumerating pseudo-triangulations in the plane
    Bereg, S
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 30 (03): : 207 - 222
  • [5] Efficiently enumerating results of keyword search
    Kimelfeld, B
    Sagiv, Y
    DATABASE PROGRAMMING LANGUAGES, 2005, 3774 : 58 - 73
  • [6] On a property of minimal triangulations
    Kratsch, Dieter
    Mueller, Haiko
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1724 - 1729
  • [7] EFFICIENTLY UPDATING CONSTRAINED DELAUNAY TRIANGULATIONS
    WANG, CA
    BIT, 1993, 33 (02): : 238 - 252
  • [8] Isolation concepts for efficiently enumerating dense subgraphs
    Komusiewicz, Christian
    Hueffner, Falk
    Moser, Hannes
    Niedermeier, Rolf
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (38-40) : 3640 - 3654
  • [9] Computational hardness of enumerating groundstates of the antiferromagnetic Ising model in triangulations
    Jimenez, Andrea
    Kiwi, Marcos
    DISCRETE APPLIED MATHEMATICS, 2016, 210 : 45 - 60
  • [10] Minimal triangulations of graphs: A survey
    Heggernes, P
    DISCRETE MATHEMATICS, 2006, 306 (03) : 297 - 317