A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin

被引:175
|
作者
Guo, Wei [1 ]
Pi, Fuwei [1 ]
Zhang, Hongxia [2 ]
Sun, Jiadi [1 ]
Zhang, Yinzhi [1 ]
Sun, Xiulan [1 ]
机构
[1] Jiangnan Univ, Natl Engn Res Ctr Funct Food, Synerget Innovat Ctr Food Safety & Qual Control, Sch Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Shaanxi Univ Technol, Sch Foreign Studies, Hanzhong 723000, Peoples R China
来源
关键词
Patulin; Molecularly imprinted polymer; Carbon dots; Chitosan; Electrochemical sensor; APPLE JUICE; POLYMERS; ASSAY;
D O I
10.1016/j.bios.2017.06.036
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In this paper, molecular imprinting technique was applied to the electrochemical sensor. We used 2-oxindole as dummy template, p-Aminothiophenol (rho-ATP) as functional monomers, combined with the high sensitivity of electrochemical detection, to achieve a specific and efficient detection of patulin in fruit juice. In addition, carbon dots and chitosan were used as the modifying material to improve electron-transfer rate, expand the electroactive surface of glassy carbon electrode and enhance strength of the signal. The Au-S bond and hydrogen bond were employed to complete the assembly of the rho-ATP and 2-oxindole on the surface of the electrode. Then, polymer membranes were formed by electropolymerization in a polymer solution containing rho-ATP, HAuCl4, tetrabutylammonium perchlorate (TBAP) and the template molecule 2-oxindole. After elution, the specific cavity can adsorb the target patulin. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements were performed to monitor the electropolymerization process and its optimization. Transmission electron microscopy (TEM), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) analyses were used for characterization. This was the first time that the molecularly imprinted polymer (MIP) technology combined with carbon dots, chitosan and Au nanoparticles modification and was applied in the electrochemical detection of patulin. The linear response range of the MIP sensor was from 1 x 10(12) to 1 x 10(-9) mol L-1 and the limit of detection (LOD) was 7.57 x 10(-13) mol L-1 . The sensor had a high-speed real-time detection capability, low sample consumption, high sensitivity, low interference, good stability and could become a new promising method for the detection of patulin.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 50 条
  • [1] A novel electrochemical sensor based on electrode modified with gold nanoparticles and molecularly imprinted polymer for rapid determination of trazosin
    Roushani, Mahmoud
    Jalilian, Zeynab
    Nezhadali, Azizollah
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 172 : 594 - 600
  • [2] A molecularly imprinted electrochemical sensor based on gold nanoparticles and multiwalled carbon nanotube-chitosan for the detection of tryptamine
    Meng, Xue
    Guo, Wenjuan
    Qin, Xiaoli
    Liu, Yiming
    Zhu, Xiangwei
    Pei, Meishan
    Wang, Luyan
    RSC ADVANCES, 2014, 4 (73): : 38649 - 38654
  • [3] Development of a chitosan molecularly imprinted electrochemical sensor for trichlorphon determination
    Chen, Juanjuan
    Lian, Huiting
    Sun, Xiangying
    Liu, Bin
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2012, 92 (09) : 1046 - 1058
  • [4] Electrochemical Determination of Tetracycline Using Molecularly Imprinted Polymer Modified Carbon Nanotube-Gold Nanoparticles Electrode
    Wang, Hongtao
    Zhao, Huimin
    Quan, Xie
    Chen, Shuo
    ELECTROANALYSIS, 2011, 23 (08) : 1863 - 1869
  • [5] Electrochemical sensor for dimetridazole based on novel gold nanoparticles@molecularly imprinted polymer
    Yang, Guangming
    Zhao, Faqiong
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 220 : 1017 - 1022
  • [6] A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor
    Surya, Sandeep G.
    Khatoon, Shahjadi
    Lahcen, Abdellatif Ait
    Nguyen, An T. H.
    Dzantiev, Boris B.
    Tarannum, Nazia
    Satama, Khaled N.
    RSC ADVANCES, 2020, 10 (22) : 12823 - 12832
  • [7] A disposable molecularly imprinted electrochemical sensor based on screen-printed electrode modified with ordered mesoporous carbon and gold nanoparticles for determination of ractopamine
    Ma, Min
    Zhu, Pei
    Pi, Fuwei
    Ji, Jian
    Sun, Xiulan
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 775 : 171 - 178
  • [8] Novel electrochemical sensor modified with molecularly imprinted polymers for determination of enrofloxacin in marine environment
    Jianlei Chen
    Liju Tan
    Keming Qu
    Zhengguo Cui
    Jiangtao Wang
    Microchimica Acta, 2022, 189
  • [9] Novel electrochemical sensor modified with molecularly imprinted polymers for determination of enrofloxacin in marine environment
    Chen, Jianlei
    Tan, Liju
    Qu, Keming
    Cui, Zhengguo
    Wang, Jiangtao
    MICROCHIMICA ACTA, 2022, 189 (03)
  • [10] Molecularly Imprinted Glucose Electrochemical Sensor Sensitized by Carbon Quantum Dots
    Cheng, Shi-Qi
    Yang, Jing
    Qin, Shang-Ying
    Huang, Li
    Shi, Rui
    Wang, Yi-Lin
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2023, 51 (04) : 549 - 558