The Commutators of Strongly Singular Integral Operators on the Weighted Hardy Spaces

被引:3
|
作者
Han, Yan Yan [1 ]
Wu, Huo Xiong [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Strongly singular Calderon-Zygmund operators; commutators; Muckenhoupt weights; BMO spaces; Hardy spaces; BOUNDEDNESS;
D O I
10.1007/s10114-021-1069-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a strongly singular Calderon-Zygmund operator and b is an element of L-loc (R-n). This article finds out a class of non-trivial subspaces BMO omega,p,u (R-n) of BMO (R-n) for certain omega is an element of A(1), 0 < p <= 1 and 1 < u <= infinity, such that the commutator [b, T] is bounded from weighted Hardy space H-omega(p) (R-n) to weighted Lebesgue space L-omega(p)(R-n) if b is an element of BMO omega,p,infinity (R-n), and is bounded from weighted Hardy space H-omega(p)(R-n) to itself if T*1 = 0 and b is an element of BMO omega,p,u (R-n) for 1 < u < 2.
引用
收藏
页码:1909 / 1920
页数:12
相关论文
共 50 条