CONFIRM: Evaluating Compatibility and Relevance of Control-flow Integrity Protections for Modern Software

被引:0
|
作者
Xu, Xiaoyang [1 ]
Ghaffarinia, Masoud [1 ]
Wang, Wenhao [1 ]
Hamlen, Kevin W. [1 ]
Lin, Zhiqiang [2 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
[2] Ohio State Univ, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
CONFIRM (CONtrol-Flow Integrity Relevance Metrics) is a new evaluation methodology and microbenchmarking suite for assessing compatibility, applicability, and relevance of control-flow integrity (CFI) protections for preserving the intended semantics of software while protecting it from abuse. Although CFI has become a mainstay of protecting certain classes of software from code-reuse attacks, and continues to be improved by ongoing research, its ability to preserve intended program functionalities (semantic transparency) of diverse, mainstream software products has been under-studied in the literature. This is in part because although CFI solutions are evaluated in terms of performance and security, there remains no standard regimen for assessing compatibility. Researchers must often therefore resort to anecdotal assessments, consisting of tests on homogeneous software collections with limited variety (e.g., GNU Coreutils), or on CPU benchmarks (e.g., SPEC) whose limited code features are not representative of large, mainstream software products. Reevaluation of CFI solutions using CONFIRM reveals that there remain significant unsolved challenges in securing many large classes of software products with CFI, including software for market-dominant OSes (e.g., Windows) and code employing certain ubiquitous coding idioms (e.g., event-driven callbacks and exceptions). An estimated 47% of CFI-relevant code features with high compatibility impact remain incompletely supported by existing CFI algorithms, or receive weakened controls that leave prevalent threats unaddressed (e.g., return-oriented programming attacks). Discussion of these open problems highlights issues that future research must address to bridge these important gaps between CFI theory and practice.
引用
收藏
页码:1805 / 1821
页数:17
相关论文
共 50 条
  • [1] Control-Flow Integrity: Attacks and Protections
    Sayeed, Sarwar
    Marco-Gisbert, Hector
    Ripoll, Ismael
    Birch, Miriam
    APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [2] Control-Flow Bending: On the Effectiveness of Control-Flow Integrity
    Carlini, Nicolas
    Barresi, Antonio
    Payer, Mathias
    Wagner, David
    Gross, Thomas R.
    PROCEEDINGS OF THE 24TH USENIX SECURITY SYMPOSIUM, 2015, : 161 - 176
  • [3] MazeRunner: Evaluating the Attack Surface of Control-Flow Integrity Policies
    Zeng, Dongrui
    Niu, Ben
    Tan, Gang
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 810 - 821
  • [4] Fine-Grained Control-Flow Integrity for Kernel Software
    Ge, Xinyang
    Talele, Nirupama
    Payer, Mathias
    Jaeger, Trent
    1ST IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY, 2016, : 179 - 194
  • [5] On the Effectiveness of Control-Flow Integrity Against Modern Attack Techniques
    Sayeed, Sarwar
    Marco-Gisbert, Hector
    ICT SYSTEMS SECURITY AND PRIVACY PROTECTION, SEC 2019, 2019, 562 : 331 - 344
  • [6] Opaque Control-Flow Integrity
    Mohan, Vishwath
    Larsen, Per
    Brunthaler, Stefan
    Hamlen, Kevin W.
    Franz, Michael
    22ND ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2015), 2015,
  • [7] Modular Control-Flow Integrity
    Niu, Ben
    Tan, Gang
    ACM SIGPLAN NOTICES, 2014, 49 (06) : 577 - 587
  • [8] PROLEPSIS: Binary analysis and instrumentation of IoT software for control-flow integrity
    Forte, Valentina
    Maunero, Nicolo
    Prinetto, Paolo
    Roascio, Gianluca
    International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2021, 2021,
  • [9] Out Of Control: Overcoming Control-Flow Integrity
    Goktas, Enes
    Athanasopoulos, Elias
    Bos, Herbert
    Portokalidis, Georgios
    2014 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP 2014), 2014, : 575 - 589
  • [10] Survey on Control-flow Integrity Techniques
    Zhang Z.
    Xue J.-F.
    Zhang J.-C.
    Chen T.
    Tan Y.-A.
    Li Y.-Z.
    Zhang Q.-X.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (01): : 489 - 508