Thermal Transport in Nanoparticle Packings Under Laser Irradiation

被引:5
|
作者
Yuksel, Anil [1 ]
Yu, Edward T. [2 ]
Cullinan, Michael [1 ]
Murthy, Jayathi [3 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78758 USA
[3] Univ Calif Los Angeles, Henry Samueli Sch Engn & Appl Sci, Los Angeles, CA 90095 USA
来源
基金
美国国家科学基金会;
关键词
near-field thermal energy; interfacial thermal conductance; nanoparticle packings; METAL NANOPARTICLES; OPTICAL-PROPERTIES; HEAT-TRANSFER; SHAPE; SIZE; NANOMATERIALS; FEMTOSECOND; AGGREGATION;
D O I
10.1115/1.4045731
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanoparticle heating due to laser irradiation is of great interest in electronic, aerospace, and biomedical applications. This paper presents a coupled electromagnetic-heat transfer model to predict the temperature distribution of multilayer copper nanoparticle packings on a glass substrate. It is shown that heat transfer within the nanoparticle packing is dominated by the interfacial thermal conductance between particles when the interfacial thermal conductance constant, G(IC), is greater than 20MW/m(2)K, but that for lower G(IC) values, thermal conduction through the air around the nanoparticles can also play a role in the overall heat transfer within the nanoparticle system. The coupled model is used to simulate heat transfer in a copper nanoparticle packing used in a typical microscale selective laser sintering (mu-SLS) process with an experimentally measured particle size distribution and layer thickness. The simulations predict that the nanoparticles will reach a temperature of 730 +/- 3K for a laser irradiation of 2.6kW/cm(2) and 1304 +/- 23K for a laser irradiation of 6kW/cm(2). These results are in good agreement with the experimentally observed laser-induced sintering and melting thresholds for copper nanoparticle packing on glass substrates.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Near-field thermal transport in a nanotip under laser irradiation
    Chen, Xiangwen
    Wang, Xinwei
    NANOTECHNOLOGY, 2011, 22 (07)
  • [2] Enhanced thermal conductivity of alumina nanoparticle suspensions by femtosecond laser irradiation
    Ha, J.
    Seo, Y.
    Choi, T. -Y.
    Kim, D.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 107 : 755 - 760
  • [3] Thermal stress in cartilage under holmium laser irradiation
    Bressem, M
    Meyer, D
    Foth, HJ
    LASER-TISSUE INTERACTION AND TISSUE OPTICS, PROCEEDINGS OF, 1996, 2624 : 58 - 66
  • [4] Thermal effects of optical antenna under the Irradiation of laser
    Sun Yi
    Li Fu
    Yang Wenqiang
    Yang Jianfeng
    AOPC 2017: SPACE OPTICS AND EARTH IMAGING AND SPACE NAVIGATION, 2017, 10463
  • [5] Thermal isolation and thermal sensing technologies of spacecraft under laser irradiation
    Li, Xingchen
    Lu, Wei
    Ding, Ye
    Li, Jian
    Gong, Zhiqiang
    Yang, Zhen
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166
  • [6] Effect of intense laser irradiation on the thermal transport properties of metals
    Karna, Pravin
    Giri, Ashutosh
    PHYSICAL REVIEW B, 2023, 107 (09)
  • [7] Thermal and gasdynamic analysis of ablation of poly(methyl methacrylate) by pulsed IR laser irradiation under conditions of nanoparticle formation
    Bulgakova, N. M.
    Zakharov, L. A.
    Onischuk, A. A.
    Kiselev, V. G.
    Baklanov, A. M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (06)
  • [8] Enhancement of thermal conductivity of titanium dioxide nanoparticle suspensions by femtosecond laser irradiation
    Ha, Jeonghong
    Jeon, Hyeonjin
    Choi, Tae-Youl
    Kim, Dongsik
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 133 : 662 - 668
  • [9] Thermal ablation law of nylon materials under laser irradiation
    Meng, Wen
    Han, Xiao-Fei
    Li, Yun-Xia
    Li, Da
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2014, 22 (08): : 2014 - 2019
  • [10] Surface thermal expansion of metal under femtosecond laser irradiation
    Maznev, AA
    Hohlfeld, J
    Gudde, J
    JOURNAL OF APPLIED PHYSICS, 1997, 82 (10) : 5082 - 5085