Identity-Aware Facial Expression Recognition Via Deep Metric Learning Based on Synthesized Images

被引:21
|
作者
Huang, Wei [1 ,2 ]
Zhang, Siyuan [1 ,2 ]
Zhang, Peng [3 ]
Zha, Yufei [3 ]
Fang, Yuming [4 ]
Zhang, Yanning [3 ]
机构
[1] Nanchang Univ, China Mobile NCU AI&IOT Jointed Lab, Informatizat Off, Nanchang 330022, Jiangxi, Peoples R China
[2] Nanchang Univ, Dept Comp Sci, Sch Informat Engn, Nanchang 330022, Jiangxi, Peoples R China
[3] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[4] Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Measurement; Generative adversarial networks; Face recognition; Feature extraction; Image synthesis; Image recognition; Deep learning; facial expression recognition; image synthesis; person-dependent; metric learning; PATTERN; FACE;
D O I
10.1109/TMM.2021.3096068
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Person-dependent facial expression recognition has received considerable research attention in recent years. Unfortunately, different identities can adversely influence recognition accuracy, and the recognition task becomes challenging. Other adverse factors, including limited training data and improper measures of facial expressions, can further contribute to the above dilemma. To solve these problems, a novel identity-aware method is proposed in this study. Furthermore, this study also represents the first attempt to fulfill the challenging person-dependent facial expression recognition task based on deep metric learning and facial image synthesis techniques. Technically, a StarGAN is incorporated to synthesize facial images depicting different but complete basic emotions for each identity to augment the training data. Then, a deep-convolutional-neural-network-based network is employed to automatically extract latent features from both real facial images and all synthesized facial images. Next, a Mahalanobis metric network trained based on extracted latent features outputs a learned metric that measures facial expression differences between images, and the recognition task can thus be realized. Extensive experiments based on several well-known publicly available datasets are carried out in this study for performance evaluations. Person-dependent datasets, including CK+, Oulu (all 6 subdatasets), MMI, ISAFE, ISED, etc., are all incorporated. After comparing the new method with several popular or state-of-the-art facial expression recognition methods, its superiority in person-dependent facial expression recognition can be proposed from a statistical point of view.
引用
收藏
页码:3327 / 3339
页数:13
相关论文
共 50 条
  • [1] Identity-Aware Facial Expression Recognition Method Based on Synthesized Images and Deep Metric Learning
    Zhang S.
    Xiao S.
    Zhang P.
    Huang W.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (05): : 724 - 732
  • [2] Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition
    Liu, Xiaofeng
    Kumar, B. V. K. Vijaya
    You, Jane
    Jia, Ping
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 522 - 531
  • [3] Identity-aware Facial Expression Recognition in Compressed Video
    Liu, Xiaofeng
    Jin, Linghao
    Han, Xu
    Lu, Jun
    You, Jane
    Kong, Lingsheng
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 7508 - 7514
  • [4] Identity-aware convolutional neural networks for facial expression recognition
    Zhang, Chongsheng
    Wang, Pengyou
    Chen, Ke
    Kamarainen, Joni-Kristian
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2017, 28 (04) : 784 - 792
  • [5] Racial Identity-Aware Facial Expression Recognition Using Deep Convolutional Neural Networks
    Sohail, Muhammad
    Ali, Ghulam
    Rashid, Javed
    Ahmad, Israr
    Almotiri, Sultan H.
    AlGhamdi, Mohammed A.
    Nagra, Arfan A.
    Masood, Khalid
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [6] Identity-aware convolutional neural networks for facial expression recognition
    Chongsheng Zhang
    Pengyou Wang
    Ke Chen
    Joni-Kristian Kmrinen
    JournalofSystemsEngineeringandElectronics, 2017, 28 (04) : 784 - 792
  • [7] Identity-Aware Convolutional Neural Network for Facial Expression Recognition
    Meng, Zibo
    Liu, Ping
    Cai, Jie
    Han, Shizhong
    Tong, Yan
    2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, : 558 - 565
  • [8] Mutual information regularized identity-aware facial expression recognition in compressed video
    Liu, Xiaofeng
    Jin, Linghao
    Han, Xu
    You, Jane
    PATTERN RECOGNITION, 2021, 119
  • [9] Identity-Aware Contrastive Knowledge Distillation for Facial Attribute Recognition
    Chen, Si
    Zhu, Xueyan
    Yan, Yan
    Zhu, Shunzhi
    Li, Shao-Zi
    Wang, Da-Han
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (10) : 5692 - 5706
  • [10] Facial Expression Recognition via Deep Learning
    Fathallah, Abir
    Abdi, Lotfi
    Douik, Ali
    2017 IEEE/ACS 14TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2017, : 745 - 750