Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow

被引:41
|
作者
Ogawa, T [1 ]
机构
[1] Kyushu Univ 36, Fac Math, Fukuoka 8128581, Japan
关键词
critical Sobolev inequalities; Lizorkin-Triebel space; interpolation inequality; harmonic heat flow; regularity criterion; bounded mean oscillation;
D O I
10.1137/S0036141001395868
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show a sharp version of the Sobolev inequality of the Beale-Kato-Majda and the Kozono-Taniuchi type in Lizorkin-Triebel space. As an application of this inequality, the regularity problem under the critical condition to the gradient flow of the harmonic map into a sphere is considered in the class L-2(0, T; BMO(R-n; S-m)), where BMO is the class of functions of bounded mean oscillations.
引用
收藏
页码:1318 / 1330
页数:13
相关论文
共 50 条
  • [1] On sharp Sobolev embedding and the logarithmic Sobolev inequality
    Beckner, W
    Pearson, M
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 : 80 - 84
  • [2] THE SHARP SOBOLEV TRACE INEQUALITY IN A LIMITING CASE
    Park, Young Ja
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (03): : 629 - 633
  • [3] An asymptotic sharp Sobolev regularity for planar infinity harmonic functions
    Koch, Herbert
    Zhang, Yi Ru-Ya
    Zhou, Yuan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 457 - 482
  • [4] New Logarithmic Sobolev Inequalities and an ε-Regularity Theorem for the Ricci Flow
    Hein, Hans-Joachim
    Naber, Aaron
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (09) : 1543 - 1561
  • [5] The logarithmic Sobolev inequality on the Heisenberg group and applications to the uncertainty inequality and heat equation
    Suguro, Takeshi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [6] THE EQUIVALENCE OF THE LOGARITHMIC SOBOLEV INEQUALITY AND THE DOBRUSHIN-SHLOSMAN MIXING CONDITION
    STROOCK, DW
    ZEGARLINSKI, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (02) : 303 - 323
  • [7] SHARP LOGARITHMIC SOBOLEV INEQUALITIES ALONG AN EXTENDED RICCI FLOW AND APPLICATIONS
    Wu, Guoqiang
    Zheng, Yu
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (02) : 483 - 509
  • [8] A Regularity Criterion for the Harmonic Heat Flow
    Xiaochun Chen
    Yanyi Jin
    Liangbing Jin
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 91 - 94
  • [9] A Regularity Criterion for the Harmonic Heat Flow
    Chen, Xiaochun
    Jin, Yanyi
    Jin, Liangbing
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (01) : 91 - 94
  • [10] SHARP CONSTANT FOR Lp - L∞ TYPE SOBOLEV'S INEQUALITY
    Lou, Hongwei
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02): : 667 - 685