Analytical study of D-dimensional fractional Klein-Gordon equation with a fractional vector plus a scalar potential

被引:5
|
作者
Das, Tapas [1 ]
Ghosh, Uttam [2 ]
Sarkar, Susmita [2 ]
Das, Shantanu [3 ]
机构
[1] Kodalia Prasanna Banga High Sch HS, South 24 Parganas, Kolkata 700146, India
[2] Univ Calcutta, Dept Appl Math, Kolkata 700009, India
[3] Bhabha Atom Res Ctr, Reactor Control Syst Design Sect E&I Grp, Mumbai 400085, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2020年 / 94卷 / 01期
关键词
Fractional Klein-Gordon equation; power series method; fractional Coulomb potential; Mittag-Leffler function;
D O I
10.1007/s12043-019-1902-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
D-dimensional fractional Klein-Gordon equation with fractional vector and scalar potential has been studied. Both fractional potentials are taken as attractive Coulomb-type with different multiplicative parameters, namely v and s. Jumarie-type definitions for fractional calculus have been used. We have succeeded in achieving Whittaker-type classical differential equation in fractional mode for the required eigenfunction. Fractional Whittaker equation has been manipulated using the behaviour of the eigenfunction at asymptotic distance and origin. This manipulation delivers fractional-type confluent hypergeometric equation to solve. Power series method has been employed to do the task. All the obtained results agree with the existing results in literature when fractional parameter alpha is unity. Finally, we furnish numerical results with a few eigenfunction graphs for different spatial dimensions and fractional parameters.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Analytical study of D-dimensional fractional Klein–Gordon equation with a fractional vector plus a scalar potential
    Tapas Das
    Uttam Ghosh
    Susmita Sarkar
    Shantanu Das
    Pramana, 2020, 94
  • [2] Analytical solutions for the fractional Klein-Gordon equation
    Kheiri, Hosseni
    Shahi, Samane
    Mojaver, Aida
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2014, 2 (02): : 99 - 114
  • [3] Analytical solutions of D-dimensional Klein-Gordon equation with modified Mobius squared potential
    Onyenegecha, C. P.
    Opara, A. I.
    Njoku, I. J.
    Udensi, S. C.
    Ukewuihe, U. M.
    Okereke, C. J.
    Omame, A.
    RESULTS IN PHYSICS, 2021, 25
  • [4] The Klein-Gordon equation with a coulomb plus scalar potential in D dimensions
    Ma, ZQ
    Dong, SH
    Gu, XY
    Yu, JA
    Lozada-Cassou, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2004, 13 (03): : 597 - 610
  • [5] Analytical study of time-fractional order Klein-Gordon equation
    Tamsir, Mohammad
    Srivastava, Vineet K.
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (01) : 561 - 567
  • [6] The analytical resolution of Klein-Gordon equation with vector and scalar for Coulomb plus Yukawa potentials
    Reggab, Khalid
    MODERN PHYSICS LETTERS A, 2024, 39 (37)
  • [7] EXACT BOUND STATES OF THE D-DIMENSIONAL KLEIN-GORDON EQUATION WITH EQUAL SCALAR AND VECTOR RING-SHAPED PSEUDOHARMONIC POTENTIAL
    Ikhdair, Sameer M.
    Sever, Ramazan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2008, 19 (09): : 1425 - 1442
  • [8] On nonlinear fractional Klein-Gordon equation
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    Baleanu, Dumitru
    SIGNAL PROCESSING, 2011, 91 (03) : 446 - 451
  • [9] Approximate Solutions of D-Dimensional Klein-Gordon Equation with modified Hylleraas Potential
    Akpan N. Ikot
    Oladunjoye A. Awoga
    Akaninyene D. Antia
    Hassan Hassanabadi
    Elham Maghsoodi
    Few-Body Systems, 2013, 54 : 2041 - 2051
  • [10] Approximate Solutions of D-Dimensional Klein-Gordon Equation with modified Hylleraas Potential
    Ikot, Akpan N.
    Awoga, Oladunjoye A.
    Antia, Akaninyene D.
    Hassanabadi, Hassan
    Maghsoodi, Elham
    FEW-BODY SYSTEMS, 2013, 54 (11) : 2041 - 2051